
Open Group Technical Standard

Data Link Provider Interface (DLPI), Version 2

The Open Group

 January 2000, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Open Group Technical Standard

Data Link Provider Interface (DLPI), Version 2

ISBN: 1-85912-251-5
Document Number: C811

Published in the U.K. by The Open Group, January 2000.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Open Group Technical Standard (2000)

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Model of the Data Link Layer .. 2
 1.2.1 Model of the Service Interface... 2
 1.3 Modes of Communication .. 4
 1.3.1 Connection-mode Service .. 4
 1.3.1.1 Local Management ... 4
 1.3.1.2 Connection Establishment .. 4
 1.3.1.3 Data Transfer.. 5
 1.3.1.4 Connection Release .. 5
 1.3.2 Connectionless-mode Service ... 5
 1.3.3 Acknowledged Connectionless-mode Service 5
 1.4 DLPI Addressing... 6
 1.4.1 Physical Attachment Identification.. 6
 1.4.2 Data Link User Identification.. 7
 1.5 Connection Management Stream.. 8

Chapter 2 DLPI Services ... 9
 2.1 Management Services .. 11
 2.1.1 Information Reporting Service.. 11
 2.1.2 Attach Service... 11
 2.1.3 Bind Service... 12
 2.2 Connection-mode Services ... 15
 2.2.1 Connection Establishment Service... 15
 2.2.1.1 Normal Connection Establishment... 15
 2.2.1.2 Connection Establishment Rejections .. 16
 2.2.2 Data Transfer Service .. 18
 2.2.3 Connection Release Service ... 19
 2.2.4 Reset Service ... 20
 2.3 Connectionless-mode Services .. 23
 2.3.1 Connectionless Data Transfer Service ... 23
 2.3.2 QOS Management Service ... 23
 2.3.3 Error Reporting Service .. 24
 2.3.4 XID and TEST Service... 24
 2.4 Acknowledged Connectionless-mode Services 26
 2.4.1 Acknowledged Connectionless-mode Data Transfer Services 26
 2.4.2 QOS Management Service ... 27
 2.4.3 Error Reporting Service .. 27
 2.5 Example .. 28

Data Link Provider Interface (DLPI), Version 2 iii

Contents

Chapter 3 DLPI Primitives... 29
 3.1 Local Management Service Primitives ... 31
 3.1.1 PPA Initialization/De-initialization .. 31
 3.1.2 List of Local Management Service Primitives 32
 DL_INFO_REQ .. 33
 DL_INFO_ACK .. 34
 DL_ATTACH_REQ .. 39
 DL_DETACH_REQ ... 41
 DL_BIND_REQ.. 42
 DL_BIND_ACK.. 46
 DL_UNBIND_REQ ... 48
 DL_SUBS_BIND_REQ ... 49
 DL_SUBS_BIND_ACK ... 51
 DL_SUBS_UNBIND_REQ ... 52
 DL_ENABMULTI_REQ .. 53
 DL_DISABMULTI_REQ... 54
 DL_PROMISCON_REQ ... 55
 DL_PROMISCOFF_REQ ... 56
 DL_OK_ACK .. 57
 DL_ERROR_ACK .. 58
 3.2 Connection-mode Service Primitives ... 59
 3.2.1 Scope... 59
 3.2.2 Multi-threaded Connection Establishment .. 59
 3.2.3 List of Connection-mode Service Primitives...................................... 60
 DL_CONNECT_REQ .. 61
 DL_CONNECT_IND... 63
 DL_CONNECT_RES ... 65
 DL_CONNECT_CON ... 67
 DL_TOKEN_REQ .. 68
 DL_TOKEN_ACK .. 69
 DL_DATA_REQ ... 70
 DL_DATA_IND .. 71
 DL_DISCONNECT_REQ ... 72
 DL_DISCONNECT_IND .. 74
 DL_RESET_REQ ... 76
 DL_RESET_IND .. 77
 DL_RESET_RES .. 78
 DL_RESET_CON... 79
 3.3 Connectionless-mode Service Primitives .. 80
 3.3.1 Scope... 80
 3.3.2 List of Connectionless-mode Service Primitives............................... 80
 DL_UNITDATA_REQ ... 81
 DL_UNITDATA_IND ... 83
 DL_UDERROR_IND .. 84
 DL_UDQOS_REQ ... 85
 3.4 Primitives to handle XID and TEST operations 86
 3.4.1 Scope... 86
 3.4.2 List of Primitives Handling XID and TEST operations.................... 86

iv Open Group Technical Standard (2000)

Contents

 DL_TEST_REQ .. 87
 DL_TEST_IND ... 89
 DL_TEST_RES ... 90
 DL_TEST_CON.. 92
 DL_XID_REQ .. 93
 DL_XID_IND ... 95
 DL_XID_RES ... 96
 DL_XID_CON .. 98
 3.5 Acknowledged Connectionless-mode Service Primitives 99
 3.5.1 Scope... 99
 3.5.2 List of Acknowledged Connectionless-mode Service Primitives.. 99
 DL_DATA_ACK_REQ .. 100
 DL_DATA_ACK_IND ... 102
 DL_DATA_ACK_STATUS_IND .. 104
 DL_REPLY_REQ ... 105
 DL_REPLY_IND .. 107
 DL_REPLY_STATUS_IND ... 108
 DL_REPLY_UPDATE_REQ ... 110
 DL_REPLY_UPDATE_STATUS_IND .. 111

Chapter 4 Quality of Data Link Service .. 113
 4.1 Characteristics ... 113
 4.2 Overview of Quality of Service ... 113
 4.2.1 Connection-mode Service .. 113
 4.2.2 QOS for Connectionless/Acknowledged Connectionless 114
 4.3 QOS Parameter Definitions .. 115
 4.3.1 Throughput ... 115
 4.3.2 Transit Delay... 116
 4.3.3 Priority.. 116
 4.3.4 Protection... 117
 4.3.5 Residual Error Rate.. 118
 4.3.6 Resilience ... 118
 4.4 QOS Data Structures .. 120
 4.4.1 Structure DL_QOS_CO_RANGE1... 120
 4.4.2 Structure DL_QOS_CO_SEL1 ... 121
 4.4.3 Structure DL_QOS_CL_RANGE1.. 121
 4.4.4 Structure DL_QOS_CL_SEL1.. 122
 4.5 Procedures for QOS Negotiation and Selection 123
 4.5.1 Connection-mode QOS Negotiation ... 123
 4.5.2 Connectionless-mode QOS Selection .. 126

Appendix A Primitives for Management Services... 127
 DL_GET_STATISTICS_ACK ... 128
 DL_GET_STATISTICS_REQ.. 129
 DL_PHYS_ADDR_ACK ... 130
 DL_PHYS_ADDR_REQ ... 131
 DL_SET_PHYS_ADDR_REQ.. 132

Data Link Provider Interface (DLPI), Version 2 v

Contents

Appendix B Allowable Sequence of DLPI Primitives................................. 133
 B.1 DLPI States ... 134
 B.2 Variables and Actions for State Transition Table 137
 B.3 DLPI User-originated Events ... 138
 B.4 DLPI Provider-Originated Events ... 139
 B.5 DLPI State Transition Table .. 141

Appendix C Precedence of DLPI Primitives .. 147
 C.1 Overview .. 147
 C.2 Write Queue Precedence ... 148
 C.3 Read Queue Precedence .. 150

Appendix D Guidelines for Protocol-independent DLS Users.............. 153

Appendix E DLS Provider-Specific Information .. 155
 E.1 DLSAP Address Space... 155
 E.2 Subsequent DLSAP Addresses .. 156
 E.3 PPA Access and Control.. 156
 E.4 Quality of Service.. 157
 E.5 DL_INFO_ACK Values.. 157
 E.6 Supported Services ... 157
 E.7 User State Transitions .. 158

Appendix F DLPI Header File.. 159

 Glossary ... 179

 Index... 181

List of Figures

1-1 Abstract View of DLPI.. 2
1-2 Data Link Addressing Components .. 6
2-1 Information Reporting.. 11
2-2 Attaching a Stream to a Physical Line... 11
2-3 Detaching a Stream from a Physical Line... 11
2-4 Binding a Stream to a DLSAP.. 12
2-5 Unbinding a Stream from a DLSAP... 13
2-6 Enabling a specific multicast address on a Stream................................. 13
2-7 Disabling a specific multicast address on a Stream................................ 13
2-8 Enabling promiscuous mode on a Stream.. 14
2-9 Disabling promiscuous mode on a Stream .. 14
2-10 Successful Connection Establishment... 15
2-11 Token Retrieval... 16
2-12 Called DLS User Rejection of Connection Establishment Attempt 16
2-13 DLS Provider Rejection of a Connection Establishment Attempt....... 17
2-14 Both Primitives Destroyed by Provider .. 17
2-15 DL_DISCONNECT Ind Arrives Before DL_CONNECT Resp Sent ... 17

vi Open Group Technical Standard (2000)

Contents

2-16 DL_DISCONNECT Ind Arrives After DL_CONNECT Resp Sent...... 18
2-17 Normal Data Transfer ... 18
2-18 Connection Release Invoked by DLS User... 19
2-19 Simultaneous Connectioin Release by DLS Users.................................. 19
2-20 Connection Release Invoked by DLS Provider.. 19
2-21 Simultaneous Connection Release by DLS User & DLS Provider....... 20
2-22 Connection Reset Invoked by DLS User... 21
2-23 Simultaneous Connection Reset Invoked by DLS User......................... 21
2-24 Connectioon Reset Invoked by DLS Provider ... 22
2-25 Simultaneous Connection Reset by DLS User & DLS Provider........... 22
2-26 Connectionless Data Transfer ... 23
2-27 QOS Service .. 23
2-28 Error Reporting Service .. 24
2-29 XID Service.. 24
2-30 TEST Service ... 25
2-31 Acknowledged Connectionless-Mode DU Transmission Service....... 26
2-32 Acknowledged Connectionless-Mode DU Exchange Service.............. 26
2-33 Acknowledged Connectionless-Mode RDU Preparation Service 27
2-34 A Connection-mode Example... 28

List of Tables

2-1 Cross-Reference of DLS Services and Primitives.................................... 10
4-1 QOS Supported Parameters... 115
B-1 States Associated with DLPI ... 134
B-2 DPLI State Transition Table Variables ... 137
B-3 DLPI State Transition Actions... 137
B-4 DLPI User-oriented Events .. 138
B-5 DLPI Provider-Originated Events .. 140
B-6 DLPI State Transition - Local Management Phase.................................. 143
B-7 DLPI State Transition - Connectionless DT Phase 143
B-8 DLPI State Transition - Acknowledged Connectionless DT Phase 144
B-9 DLPI State Transition - Connection Establishment Phase 144
B-10 DLPI State Transition - Connection-mode Data Transfer Phase.......... 145
C-1 Write Queue Precedence .. 148
C-2 Read Queue Precedence ... 151

Data Link Provider Interface (DLPI), Version 2 vii

Contents

viii Open Group Technical Standard (2000)

Preface

The Open Group

The Open Group is a vendor and technology-neutral consortium which ensures that multi-
vendor information technology matches the demands and needs of customers. It develops and
deploys frameworks, policies, best practices, standards, and conformance programs to pursue its
vision: the concept of making all technology as open and accessible as using a telephone.

The mission of The Open Group is to deliver assurance of conformance to open systems
standards through the testing and certification of suppliers’ products.

The Open group is committed to delivering greater business efficiency and lowering the cost and
risks associated with integrating new technology across the enterprise by bringing together
buyers and suppliers of information systems.

Membership of The Open Group is distributed across the world, and it includes some of the
world’s largest IT buyers and vendors representing both government and commercial
enterprises.

More information is available on The Open Group Web Site at http://www.opengroup.org.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available on The Open Group Web Site at
http://www.opengroup.org/pubs.

• Product Standards

A Product Standard is the name used by The Open Group for the documentation that records
the precise conformance requirements (and other information) that a supplier’s product must
satisfy. Product Standards, published separately, refer to one or more Technical Standards.

The ‘‘X’’ Device is used by suppliers to demonstrate that their products conform to the
relevant Product Standard. By use of the Open Brand they guarantee, through the Open
Brand Trademark License Agreement (TMLA), to maintain their products in conformance
with the Product Standard so that the product works, will continue to work, and that any
problems will be fixed by the supplier. The Open Group runs similar conformance schemes
involving different trademarks and license agreements for other bodies.

• Technical Standards (formerly CAE Specifications)

Open Group Technical Standards, along with standards from the formal standards bodies
and other consortia, form the basis for our Product Standards (see above). The Technical
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Technical Standards are published as soon as they are developed, so enabling suppliers to
proceed with development of conformant products without delay.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand.

Data Link Provider Interface (DLPI), Version 2 ix

Preface

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. There is a strong preference to develop or adopt more stable specifications
as Technical Standards.

• Consortium and Technology Specifications

The Open Group has published specifications on behalf of industry consortia. For example, it
published the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum (now TMF). It also published Technology Specifications relating to
OSF/1, DCE, OSF/Motif, and CDE.

In addition, The Open Group publishes Product Documentation. This includes product
documentation—programmer’s guides, user manuals, and so on—relating to the DCE, Motif,
and CDE. It also includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on The Open Group Web Site at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalog and ordering information on all Open Group publications is available on The Open
Group Web Site at http://www.opengroup.org/pubs.

This Document

The Open Group first published a Data Link Provider Interface (DLPI) specification in February
1997 (CAE Specification number C614). This document is the DLPI Version 2 Technical Standard,
and it supersedes C614.

The DLPI standard specifies a STREAMS kernel-level instantiation of the ISO Data Link Service
Definition ISO/IEC 8886 and Logical Link Control ISO/IEC 8802-2 (LLC). Where the two
standards do not conform, ISO/IEC 8886 prevails.

x Open Group Technical Standard (2000)

Preface

The DLPI enables a data link service user to access and use any of a variety of conforming data
link service providers, without requiring special knowledge of the provider’s protocol.

Specifically, the interface is intended to support X.25 LAPB, BX.25 level 2, SDL C, ISDN LAPD,
Ethernet, CSMA/CD, FDDI, token ring, token bus, Bisync, Frame Relay, Native ATM Services
(see Referenced Documents), Fiber Channel and HIPPI. Readers should note that the list of
data links supported by the interface may be augmented and is published on the World-Wide
Web at http://www.opengroup.org/public/pubs/catalog/u019, which is DLPI Corrigendum U019. (see
under Ordering Information). This Corrigendum will periodically be updated to add relevant
information such as recognised implementors’ agreements/guidelines for common data link
providers.

Among the expected data link service users are implementations of the OSI network layer and
SNA path control.

The interface specifies access to data link service providers, and does not define a specific
protocol implementation. Thus, issues of network management, protocol performance, and
performance analysis tools are beyond the scope of this document and should be addressed by
specific implementations of a data link provider. However, accompanying each provider
implementation should be information that describes the protocol-specific behavior of that
provider. Currently, there are plans to come up with a set of implementors’
agreements/guidelines for common data link providers. These agreements will address issues
such as DLSAP address space, subsequent addresses, ppa access and control, QOS, supported
services etc.

Intended Audience

This specification assumes the reader is familiar with OSI Reference Model terminology, OSI
Data Link Services, and STREAMS.

Document Structure

• Chapter 1 presents background on the structure of the data link layer of the OSI Reference
Model, and explains the intended architecture in the STREAMS environment. Data link
addressing concepts are also presented.

• Chapter 2 presents an overview of the services provided by DLPI.

• Chapter 3 describes the detailed syntax and semantics of each DLPI primitive that crosses the
data link interface.

• Chapter 4 describes the quality-of-service parameters supported by DLPI and the rules for
negotiating/selecting the values of those parameters.

• Appendix A lists the optional primitives to perform certain essential management functions.

• Appendix B describes the allowable sequence of DLPI primitives that may be issued across
the interface.

• Appendix C presents a summary of the precedence of DLPI primitives as they are queued by
the DLS provider and/or DLS user.

• Appendix D summarizes guidelines a DLS user implementation should follow to be assured
that their implementation will be fully protocol-independent.

• Appendix E identifes the information which should be documented for each DLS provider
implementation.

Data Link Provider Interface (DLPI), Version 2 xi

Preface

• Appendix F presents the header file containing DLPI structure and constant definitions
needed by a DLS user or provider implemented to use the interface.

A Glossary and Index are also provided.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes and environment
variables

— C-language functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a C-language header file.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax, the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

xii Open Group Technical Standard (2000)

Trade Marks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM and
The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

Data Link Provider Interface (DLPI), Version 2 xiii

Acknowledgements

The base document from which this specification is derived was published as Copyright 1991
UNIX International, Inc.

The following copyright notice was attached to the document:

Permission to use, copy, modify, and distribute this documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice a
ppears in all copies and that both that copyright notice and this permission not ice
appear in supporting documentation, and that the name UNIX International not be
used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. UNIX International makes no representations
about the suitability of this documentation for any purpose. It is provided "as is"
without express or implied warranty.

xiv Open Group Technical Standard (2000)

Referenced Documents

The following documents are referenced in this specification:

ATM Services
Native ATM Services. See the ATM Forum Publication AF-SAA-API-DLPI-0091.000: "Native
ATM Services Data Link Provider Interface (DLPI) Addendum Version 1.0". This publication
is available at ftp://ftp.atmforum.com/pub/approved-specs/, in the following files:
af-saa-api-dlpi-0091.000.pdf (PDF)
af-saa-api-dlpi-0091.000.ps (Postscript)

ISO/IEC 8886
ISO/IEC 8886: 1996, Information Technology — Open Systems Interconnection — Data Link
Service Definition.

ISO/IEC 8802-2
ISO/IEC 8802-2: 1994, Information Technology — Telecommunications and Information
Exchange between Systems — Local and Metropolitan area Networks — Specific
Requirements — Part 2: Logical Link Control.

STREAMS
UNIX Press (A Prentice Hall Title) book "STREAMS Modules and Drivers", published 1992,
ISBN 0-13-066879-6.

X.200
CCITT Recommendation X.200, "Reference Model of Open Systems Interconnection for
CCITT Applications", 1984.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
published by The Open Group.

Data Link Provider Interface (DLPI), Version 2 xv

Referenced Documents

xvi Open Group Technical Standard (2000)

Chapter 1

Introduction

1.1 Overview
This document specifies a STREAMS kernel-level instantiation of the ISO Data Link Service
Definition ISO/IEC 8886 (see referenced documents) and Logical Link Control ISO/IEC 8802-2
(LLC) (see referenced documents). Where the two standards do not conform, ISO/IEC 8886
prevails.

The Data Link Provider Interface (DLPI) enables a data link service user to access and use any of
a variety of conforming data link service providers without special knowledge of the provider’s
protocol.

Specifically, the interface is intended to support X.25 LAPB, BX.25 level 2, SDLC, ISDN LAPD,
Ethernet, CSMA/CD, FDDI, token ring, token bus, Bisync, Frame Relay, Native ATM Services,
Fiber Channel, and HIPPI. Among the expected data link service users are implementations of
the OSI network layer and SNA path control. The interface specifies access to data link service
providers, and does not define a specific protocol implementation. Thus, issues of network
management, protocol performance, and performance analysis tools are beyond the scope of this
document and should be addressed by specific implementations of a data link provider.
However, accompanying each provider implementation should be information that describes
the protocol-specific behavior of that provider. Currently, there are plans to come up with a set
of implementors’ agreements/guidelines for common data link providers. These agreements will
address issues such as DLSAP address space, subsequent addresses, PPA access and control,
QOS, supported services etc.

Readers should note that the list of data links supported by the interface may be augmented in
future, so provision is made to publish availability of these, in a Corrigendum, reference U019.
This DLPI Corrigendum U019 is available on the World-Wide Web, at
http://www.opengroup.org/pubs/catalog/u019 . Corrigendum U019 may also be used
to publish relevant additional information such as recognised implementors’
agreements/guidelines for common data link providers.

This specification assumes the reader is familiar with OSI Reference Model (see referenced
documents) terminology, OSI Data Link Services, and STREAMS. Although there are no formal
standards for a STREAMS environment, extensive descriptions of STREAMS and STREAMS
programming can be found in the referenced document STREAMS.

Data Link Provider Interface (DLPI), Version 2 1

Model of the Data Link Layer Introduction

1.2 Model of the Data Link Layer
The data link layer (layer 2 in the OSI Reference Model) is responsible for the transmission and
error-free delivery of bits of information over a physical communications medium.

The model of the data link layer is presented here to describe concepts that are used throughout
the specification of DLPI. It is described in terms of an inter face architecture, as well as
addressing concepts needed to identify different components of that architecture. The
description of the model assumes familiarity with the OSI Reference Model.

1.2.1 Model of the Service Interface

Each layer of the OSI Reference Model has two standards:

• one that defines the services provided by the layer

• one that defines the protocol through which layer services are provided.

DLPI is an implementation of the first type of standard. It specifies an interfa ce to the services of
the data link layer. Figure 1-1 depicts the abstract view of DLPI.

DLPI

Indication/Confirmation
Primitives

Request/Response
Primitives

Data Link
User

Data Link
Provider

Figure 1-1 Abstract View of DLPI

The data link interface is the boundary between the network and data link layers of the OSI
Reference Model. The network layer entity is the user of the services of the data link interface
(DLS user), and the data link layer entity is the provider of those services (DLS provider). This
interface consists of a set of primitives which provide access to the data link layer services, plus
the rules for using those primitives (state transition rules). A data link interface service primitive
might request a particular service or indicate a pending event.

To provide uniformity among the various UNIX system networking products, service interfaces
that map to the Data Link and Transport Layers of the OSI Reference Model have been
developed. The service primitives that make up these interfaces are defined as STREAMS
messages that are transferred between the user and provider of the service. DLPI is one such
kernel-level interface, and is targeted for STREAMS protocol modules that either use or provide
data link services. In addition, user programs that wish to access a STREAMS-based data link
provider directly may do so using the putmsg() and getmsg() system calls.

Referring to the abstract view of DLPI (see Figure 1-1), the DLS provider is configured as a
STREAMS driver, and the DLS user accesses the provider using open() to establish a stream to
the DLS provider. The stream acts as a communication endpoint between a DLS user and the
DLS provider. After the stream is created, the DLS user and DLS provider communicate via the
messages presented later in this specification.

2 Open Group Technical Specification (2000)

Introduction Model of the Data Link Layer

DLPI is intended to free data link users from specific knowledge of the characteristics of the data
link provider. Specifically, the definition of DLPI hopes to achieve the goal of allowing a DLS
user to be implemented independently of a specific communications medium. Any data link
provider (supporting any communications medium) that conforms to the DLPI specification
may be substituted beneath the DLS user to provide the data link services. Support of a new DLS
provider should not require any changes to the implementation of the DLS user.

Data Link Provider Interface (DLPI), Version 2 3

Modes of Communication Introduction

1.3 Modes of Communication
The data link provider interface supports three modes of communication:

• connection

• connectionless

• acknowledged connectionless.

The connection mode is circuit-oriented and enables data to be transferred over a pre-established
connection in a sequenced manner. Data may be lost or corrupted in this service mode, however,
due to provider-initiated resynchronization or connection aborts.

The connectionless mode is message-oriented and supports data transfer in self-contained units
with no logical relationship required between units. Because there is no acknowledgement of
each data unit transmission, this service mode can be unreliable in the most general case.
However, a specific DLS provider can provide assurance that messages will not be lost,
duplicated, or reordered.

The acknowledged connectionless mode provides the means by which a data link user can send
data and request the return of data at the same time. Although the exchange service is
connectionless, in-sequence delivery is guaranteed for data sent by the initiating station. The
data unit transfer is point-to-point.

1.3.1 Connection-mode Service

The connection-mode service is characterized by four phases of communication:

• local management

• connection establishment

• data transfer

• connection release.

1.3.1.1 Local Management

This phase enables a DLS user to initialize a stream for use in communication and establish an
identity with the DLS provider.

1.3.1.2 Connection Establishment

This phase enables two DLS users to establish a data link connection between them to exchange
data. One user (the calling DLS user) initiates the connection establishment procedures, while
another user (the called DLS user) waits for incoming connect requests. The called DLS user is
identified by an address associated with its stream (see Section 1.4 on page 6).

A called DLS user may either accept or deny a request for a data link connection. If the request
is accepted, a connection is established between the DLS users and they enter the data transfer
phase. For both the calling and called DLS users, only one connection may be established per
stream. Thus, the stream is the communication endpoint for a data link connection.

The called DLS user may choose to accept a connection on the stream where it received the
connect request, or it may open a new stream to the DLS provider and accept the connection on
this new, responding stream. By accepting the connection on a separate stream, the initial stream
can be designated as a listening stream through which all connect requests will be processed.

4 Open Group Technical Specification (2000)

Introduction Modes of Communication

As each request arrives, a new stream (communication endpoint) can be opened to handle the
connection, enabling subsequent requests to be queued on a single stream until they can be
processed.

1.3.1.3 Data Transfer

In this phase, the DLS users are considered peers and may exchange data simultaneously in both
directions over an established data link connection. Either DLS user may send data to its peer
DLS user at any time. Data sent by a DLS user is guaranteed to be delivered to the remote user in
the order in which it was sent.

1.3.1.4 Connection Release

This phase enables either the DLS user, or the DLS provider, to break an established connection.
The release procedure is considered abortive, so any data that has not reached the destination
user when the connection is released may be discarded by the DLS provider.

1.3.2 Connectionless-mode Service

The connectionless mode service does not use the connection establishment and release phases
of the connection-mode service. The local management phase is still required to initialize a
stream. Once initialized, however, the connectionless data transfer phase is immediately entered.
Because there is no established connection, however, the connectionless data transfer phase
requires the DLS user to identify the destination of each data unit to be transferred. The
destination DLS user is identified by the address associated with that user (see Section 1.4 on
page 6).

Connectionless data transfer does not guarantee that data units will be delivered to the
destination user in the order in which they were sent. Furthermore, it does not guarantee that a
given data unit will reach the destination DLS user, although a given DLS provider may provide
assurance that data will not be lost.

1.3.3 Acknowledged Connectionless-mode Service

The acknowledged connectionless mode service also does not use the connection establishment
and release phases of the connection-mode service. The local management phase is still required
to initialize a stream. Once initialized, the acknowledged connectionless data transfer phase is
immediately entered.

Acknowledged connectionless data transfer guarantees that data units will be delivered to the
destination user in the order in which they were sent. A data link user entity can send a data unit
to the destination DLS User, request a previously prepared data unit from the destination DLS
User, or exchange data units.

Data Link Provider Interface (DLPI), Version 2 5

DLPI Addressing Introduction

1.4 DLPI Addressing
Each user of DLPI must establish an identity to communicate with other data link users. This
identity consists of two pieces. Firstly, the DLS user must somehow identify the physical
medium over which it will communicate. This is particularly evident on systems that are
attached to multiple physical media. Secondly, the DLS user must register itself with the DLS
provider so that the provider can deliver protocol data units destined for that user. Figure 1-2
illustrates the components of this identification approach, which are explained below.

DLS Users

Physical Media

DLSAP

PPA

DLS
Provider

Figure 1-2 Data Link Addressing Components

1.4.1 Physical Attachment Identification

The physical point of attachment (PPA in Figure 1-2) is the point at which a system attaches
itself to a physical communications medium. All communication on that physical medium
funnels through the PPA. On systems where a DLS provider supports more than one physical
medium, the DLS user must identify which medium it will communicate through. A PPA is
identified by a unique PPA identifier. For media that support physical layer multiplexing of
multiple channels over a single physical medium (such as the B and D channels of ISDN), the
PPA identifier must identify the specific channel over which communication will occur.

Two styles of DLS provider are defined by DLPI, distinguished by the way they enable a DLS
user to choose a particular PPA. The style 1 provider assigns a PPA based on the major/minor
device the DLS user opened. One possible implementation of a style 1 driver would reserve a
major device for each PPA the data link driver would support. This would allow the STREAMS
clone open feature to be used for each PPA configured. This style of provider is appropriate
when few PPAs will be supported.

If the number of PPAs a DLS provider will support is large, a style 2 provider implementation is
more suitable. The style 2 provider requires a DLS user to explicitly identify the desired PPA
using a special attach service primitive. For a style 2 driver, the open() creates a stream between
the DLS user and DLS provider, and the attach primitive then associates a particular PPA with
that stream. The format of the PPA identifier is specific to the DLS provider, and should be
described in the provider-specific addendum documentation.

DLPI provides a mechanism to get or modify the physical address. The primitives to handle
these functions are described in Appendix A. The physical address value can be modified in a
post-attached state. This would modify the value for all streams for that provider for a particular
PPA. The physical address cannot be modified if even a single stream for that PPA is in the
bound state.

6 Open Group Technical Specification (2000)

Introduction DLPI Addressing

The DLS User uses the supported primitives (DL_ATTACH_REQ, DL_BIND_REQ,
DL_ENABMULTI_REQ, DL_PROMISCON_REQ) to define a set of enabled physical and SAP
address components on a per Stream basis. It is invalid for a DLS Provider to ever send
upstream a data message for which the DLS User on that stream has not requested. The burden
is on the provider to enforce by any means that it chooses the isolation of SAP and physical
address space effects on a per-stream basis.

1.4.2 Data Link User Identification

A data link user’s identity is established by associating it with a data link service access point
(DLSAP), which is the point through which the user will communicate with the data link
provider. A DLSAP is identified by a DLSAP address.

The DLSAP address identifies a particular data link service access point that is associated with a
stream (communication endpoint). A bind service primitive enables a DLS user to either choose
a specific DLSAP by specifying its DLSAP address, or to determine the DLSAP associated with a
stream by retrieving the bound DLSAP address. This DLSAP address can then be used by other
DLS users to access a specific DLS user. The format of the DLSAP address is specific to the DLS
provider, and should be described in the provider-specific addendum documentation. However,
DLPI provides a mechanism for decomposing the DLSAP address into component pieces. The
DL_INFO_ACK primitive returns the length of the SAP component of the DLSAP address, along
with the total length of the DLSAP address.

Certain DLS Providers require the capability of binding on multiple DLSAP addresses. This can
be achieved through subsequent binding of DLSAP addresses. DLPI supports peer and
hierarchical binding of DLSAPs. When the User requests peer addressing, the DLSAP specified
in a subsequent bind may be used in lieu of the DLSAP bound in the DL_BIND_REQ. This
allows for a choice to be made between a number of DLSAPs on a stream when determining
traffic based on DLSAP values. An emample of this would be to specify various ether_type values
as DLSAPs. The DL_BIND_REQ, for example, could be issued with ether_type value of IP, and a
subsequent bind could be issued with ether_type value of ARP. The Provider may now multiplex
off of the ether_type field and allow for either IP or ARP traffic to be sent up this stream.

When the DLS User requests hierarchical binding, the subsequent bind specifies a DLSAP that
will be used in addition to the DLSAP bound using a DL_BIND_REQ. This allows additional
information to be specified, which will be used in a header or for demultiplexing. An example of
this would be to use hierarchical bind to specify the OUI (Organizationally Unique Identifier) to
be used by SNAP.

If a DLS Provider supports peer subsequent bind operations, the first SAP that is bound is used
as the source SAP when there is ambiguity. DLPI supports the ability to associate several
streams with a single DLSAP, where each stream may be a unique data link connection
endpoint. However, not all DLS providers can support such configurations because some DLS
providers may have no mechanism beyond the DLSAP address for distinguishing multiple
connections. In such cases, the provider will restrict the DLS user to one stream per DLSAP.

Data Link Provider Interface (DLPI), Version 2 7

Connection Management Stream Introduction

1.5 Connection Management Stream
The earlier description of the connection-mode service assumed that a DLS user bound a DLSAP
to the stream it would use to receive connect requests. In some instances, however, it is
expected that a given service may be accessed through any one of several DLSAPs. To handle
this scenario, a separate stream would be required for each possible destination DLSAP,
regardless of whether any DLS user actually requested a connection to that DLSAP. Obvious
resource problems can result in this scenario.

To obviate the need for tying up system resources for all possible destination DLSAPs, a
connection management stream utility is defined in DLPI. A connection management stream is one
that receives any connect requests that are not destined for currently bound DLSAPs capable of
receiving connect indications. With this mechanism, a special listener can handle incoming
connect requests intended for a set of DLSAPs, by opening a connection management stream to
the DLS provider which will retrieve all connect requests arriving through a particular PPA. In
the model, therefore, there may be a connection management stream per PPA.

8 Open Group Technical Specification (2000)

Chapter 2

DLPI Services

The various features of the DLPI interface are defined in terms of the services provided by the
DLS provider, and the individual primitives that may flow between the DLS user and DLS
provider.

The data link provider interface supports three modes of service: connection, connectionless and
acknowledged connectionless. The connection mode is circuit-oriented and enables data to be
transferred over an established connection in a sequenced manner. The connectionless mode is
message-oriented and supports data transfer in self-contained units with no logical relationship
required between units. The acknowledged connectionless mode is message-oriented and
guarantees that data units will be delivered to the destination user in the order in which they
were sent. This specification also defines a set of local management functions that apply to all
modes of service.

The XID and TEST services that are supported by DLPI are listed below. The DLS User can issue
an XID or TEST request to the DLS Provider. The Provider will transmit an XID or TEST frame to
the peer DLS Provider. On receiving a response, the DLS Provider sends a confirmation
primitive to the DLS User. On receiving an XID or TEST frame from the peer DLS Provider, the
local DLS Provider sends up an XID or TEST indication primitive to the DLS User. The User
must respond with an XID or TEST response frame to the Provider.

Data Link Provider Interface (DLPI), Version 2 9

DLPI Services

The services are tabulated below and described more fully in the remainder of this section.
__

Phase Service Primitives__
DL_INFO_REQ, DL_INFO_ACK, DL_ERROR_ACKLocal Management Information Reporting__
DL_ATTACH_REQ, DL_DETACH_REQ, DL_OK_ACK,
DL_ERROR_ACK

Attach

__
DL_BIND_REQ, DL_BIND_ACK,
DL_SUBS_BIND_REQ, DL_SUBS_BIND_ACK,
DL_UNBIND_REQ, DL_SUBS_UNBIND_REQ,
DL_OK_ACK, DL_ERROR_ACK

Bind

__
DL_ENABMULTI_REQ, DL_DISABMULTI_REQ,
DL_PROMISCON_REQ, DL_PROMISCOFF_REQ,
DL_OK_ACK, DL_ERROR_ACK

Other

__
Connection
Establishment

Connection
Establishment

DL_CONNECT_REQ, DL_CONNECT_IND,
DL_CONNECT_RES, DL_CONNECT_CON,
DL_DISCONNECT_REQ, DL_DISCONNECT_IND,
DL_TOKEN_REQ, DL_TOKEN_ACK, DL_OK_ACK,
DL_ERROR_ACK__

Connection-mode
Data Transfer

Data Transfer DL_DATA_REQ, DL_DATA_IND

__
DL_RESET_REQ, DL_RESET_IND, DL_RESET_RES,
DL_RESET_CON, DL_OK_ACK, DL_ERROR_ACK

Reset
__

DL_DISCONNECT_REQ, DL_DISCONNECT_IND,
DL_OK_ACK, DL_ERROR_ACK

Connection Release Connection Release
__

Connectionless-
mode Data Transfer

DL_UNITDATA_REQ, DL_UNITDATA_INDData Transfer

__
DL_UDQOS_REQ, DL_OK_ACK, DL_ERROR_ACKQOS Management__

Error Reporting DL_UDERROR_IND__
XID and TEST
services

DL_XID_REQ, DL_XID_IND, DL_XID_RES,
DL_XID_CON

XID

__
DL_TEST_REQ, DL_TEST_IND, DL_TEST_RES,
DL_TEST_CON

TEST
__

Acknowledged
Connectionless-
mode Data Transfer

DL_DATA_ACK_REQ, DL_DATA_ACK_IND,
DL_DATA_ACK_STATUS_IND, DL_REPLY_REQ,
DL_REPLY_IND, DL_REPLY_STATUS_IND,
DL_REPLY_UPDATE_REQ,
DL_REPLY_UPDATE_STATUS_IND

Data Transfer

__
DL_UDQOS_REQ, DL_OK_ACK, DL_ERROR_ACKQOS Management__

Error Reporting DL_UDERROR_IND__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table 2-1 Cross-Reference of DLS Services and Primitives

10 Open Group Technical Specification (2000)

DLPI Services Management Services

2.1 Management Services
The local management services apply to the connection, connectionless and acknowledged
connectionless modes of transmission. These services, which fall outside the scope of standards
specifications, define the method for initializing a stream that is connected to a DLS provider.
DLS provider information reporting services are also supported by the local management
facilities.

2.1.1 Information Reporting Service

This service provides information about the DLPI stream to the DLS user. The message
DL_INFO_REQ requests the DLS provider to return operating information about the stream.
The DLS provider returns the information in a DL_INFO_ACK message.

DL_INFO
acknowledge

DL_INFO
request

Figure 2-1 Information Reporting

2.1.2 Attach Service

The attach service assigns a physical point of attachment (PPA) to a stream. This service is
required for style 2 DLS providers (see Section 1.4.1 on page 6) to specify the physical medium
over which communication will occur. The DLS provider indicates success with a DL_OK_ACK;
failure with a DL_ERROR_ACK. The normal message sequence is illustrated in the following
figure.

DL_OK
acknowledge

DL_ATTACH
request

Figure 2-2 Attaching a Stream to a Physical Line.

A PPA may be disassociated with a stream using the DL_DETACH_REQ. The normal message
sequence is illustrated in the following figure.

DL_OK
acknowledge

DL_DETACH
request

Figure 2-3 Detaching a Stream from a Physical Line

Data Link Provider Interface (DLPI), Version 2 11

Management Services DLPI Services

2.1.3 Bind Service

The bind service associates a data link service access point (DLSAP) with a stream. The DLSAP
is identified by a DLSAP address.

DL_BIND_REQ requests that the DLS provider bind a DLSAP to a stream. It also notifies the
DLS provider to make the stream active with respect to the DLSAP for processing connectionless
and acknowledged connectionless data transfer and connection establishment requests.
Protocol-specific actions taken during activation should be described in DLS provider-specific
addenda.

The DLS provider indicates success with a DL_BIND_ACK; failure with a DL_ERROR_ACK.
Certain DLS providers require the capability of binding on multiple DLSAP addresses.
DL_SUBS_BIND_REQ provides that added capability. The DLS provider indicates success with
a DL_SUBS_BIND_ACK; failure with a DL_ERROR_ACK.

The normal flow of messages is illustrated in the following figure.

DL_BIND
acknowledge

DL_SUBS_BIND
acknowledge

DL_BIND
request

DL_SUBS_BIND
request

Figure 2-4 Binding a Stream to a DLSAP

12 Open Group Technical Specification (2000)

DLPI Services Management Services

DL_UNBIND_REQ requests the DLS provider to unbind all DLSAP(s) from a stream. The
DL_UNBIND_REQ also unbinds all the subsequently bound DLSAPs that have not been
unbound. The DLS provider indicates success with a DL_OK_ACK; failure with a
DL_ERROR_ACK.

DL_SUBS_UNBIND_REQ requests the DLS Provider to unbind the subsequently bound DLSAP.
The DLS Provider indicates success with a DL_OK_ACK; failure with a DL_ERROR_ACK.

DL_OK
acknowledge

DL_OK
acknowledge

DL_UNBIND
request

DL_SUBS_UNBIND
request

Figure 2-5 Unbinding a Stream from a DLSAP

DL_ENABMULTI_REQ requests the DLS Provider to enable specific multicast addresses on a
per stream basis. The Provider indicates success with a DL_OK_ACK; failure with a
DL_ERROR_ACK.

DL_OK
acknowledge

DL_ENABMULTI
request

Figure 2-6 Enabling a specific multicast address on a Stream

DL_DISABMULTI_REQ requests the DLS Provider to disable specific multicast addresses on a
per Stream basis. The Provider indicates success with a DL_OK_ACK; failure with a
DL_ERROR_ACK.

DL_OK
acknowledge

DL_DISABMULTI
request

Figure 2-7 Disabling a specific multicast address on a Stream

Data Link Provider Interface (DLPI), Version 2 13

Management Services DLPI Services

DL_PROMISCON_REQ requests the DLS Provider to enable promiscuous mode on a per Stream
basis, either at the physical level or at the SAP level. The Provider indicates success with a
DL_OK_ACK; failure with a DL_ERROR_ACK.

DL_OK
acknowledge

DL_PROMISCON
request

Figure 2-8 Enabling promiscuous mode on a Stream

DL_PROMISCOFF_REQ requests the DLS Provider to disable promiscuous mode on a per
Stream basis, either at the physical level or at the SAP level. The Provider indicates success with
a DL_OK_ACK; failure with a DL_ERROR_ACK.

DL_OK
acknowledge

DL_PROMISCOFF
request

Figure 2-9 Disabling promiscuous mode on a Stream

14 Open Group Technical Specification (2000)

DLPI Services Connection-mode Services

2.2 Connection-mode Services
The connection-mode services enable a DLS user to establish a data link connection, transfer
data over that connection, reset the link, and release the connection when the conversation has
terminated.

2.2.1 Connection Establishment Service

The connection establishment service establishes a data link connection between a local DLS
user and a remote DLS user for the purpose of sending data. Only one data link connection is
allowed on each stream.

2.2.1.1 Normal Connection Establishment

In the connection establishment model, the calling DLS user initiates connection establishment,
while the called DLS user waits for incoming requests. DL_CONNECT_REQ requests that the
DLS provider establish a connection. DL_CONNECT_IND informs the called DLS user of the
request, which may be accepted using DL_CONNECT_RES informing the calling DLS user that
the connection has been established.

The normal sequence of messages is illustrated in the following figure.

DL_CONNECT
confirm

DL_CONNECT
response

DL_CONNECT
indication

DL_OK
acknowledge

DL_CONNECT
request

Figure 2-10 Successful Connection Establishment

Once the connection is established, the DLS users may exchange user data using
DL_DATA_REQ and DL_DATA_IND.

Data Link Provider Interface (DLPI), Version 2 15

Connection-mode Services DLPI Services

The DLS user may accept an incoming connect request on either the stream where the connect
indication arrived or an alternate, responding stream. The responding stream is indicated by a
token in the DL_CONNECT_RES. This token is a value associated with the responding stream,
and is obtained by issuing a DL_TOKEN_REQ on that stream. The DLS provider responds to
this request by generating a token for the stream and returning it to the DLS user in a
DL_TOKEN_ACK. The normal sequence of messages for obtaining a token is illustrated in the
following figure.

DL_TOKEN
acknowledge

DL_TOKEN
request

Figure 2-11 Token Retrieval

In the typical connection establishment scenario, the called DLS user processes one connect
indication at a time, accepting the connection on another stream. Once the user responds to the
current connect indication, the next connect indication (if any) can be processed. DLPI also
enables the called DLS user to multi-thread incoming connect indications. The user can receive
multiple connect indications before responding to any of them. This enables the DLS user to
establish priority schemes on incoming connect requests.

2.2.1.2 Connection Establishment Rejections

In certain situations, the connection establishment request cannot be completed. The following
paragraphs describe the occasions under which DL_DISCONNECT_REQ and
DL_DISCONNECT_IND primitives will flow during connection establishment, causing the
connect request to be aborted.

The following figure illustrates the situation where the called DLS user chooses to reject the
connect request by issuing DL_DISCONNECT_REQ instead of DL_CONNECT_RES.

DL_DISCONNECT
indication

DL_DISCONNECT
request

DL_CONNECT
indication

DL_OK
acknowledge

DL_CONNECT
request

Figure 2-12 Called DLS User Rejection of Connection Establishment Attempt

16 Open Group Technical Specification (2000)

DLPI Services Connection-mode Services

The following figure illustrates the situation where the DLS provider rejects a connect request
for lack of resources or other reason. The DLS provider sends DL_DISCONNECT_IND in
response to DL_CONNECT_REQ.

DL_DISCONNECT
indication

DL_CONNECT
request

Figure 2-13 DLS Provider Rejection of a Connection Establishment Attempt

The following figures illustrate the situation where the calling DLS user chooses to abort
aprevious connection attempt. The DLS user issues DL_DISCONNECT_REQ at some point
following a DL_CONNECT_REQ. The resulting sequence of primitives depends on the relative
timing of the primitives involved, as defined in the following time sequence diagrams.

DL_OK
acknowledge

DL_CONNECT
request

DL_DISCONNECT
request

Figure 2-14 Both Primitives Destroyed by Provider

DL_OK
acknowledge

DL_CONNECT
indication

DL_DISCONNECT
indication

DL_CONNECT
request

DL_DISCONNECT
request

Figure 2-15 DL_DISCONNECT Ind Arrives Before DL_CONNECT Resp Sent

Data Link Provider Interface (DLPI), Version 2 17

Connection-mode Services DLPI Services

DL_OK
acknowledge

DL_CONNECT
response

DL_CONNECT
indication

DL_DISCONNECT
indication

DL_OK
acknowledge

DL_CONNECT
request

DL_DISCONNECT
request

Figure 2-16 DL_DISCONNECT Ind Arrives After DL_CONNECT Resp Sent

2.2.2 Data Transfer Service

The connection-mode data transfer service provides for the exchange of user data in either
direction or in both directions simultaneously between DLS users. Data is transmitted in logical
groups called data link service data units (DLSDUs). The DLS provider preserves both the
sequence and boundaries of DLSDUs as they are transmitted.

Normal data transfer is neither acknowledged nor confirmed. It is up to the DLS users, if they so
choose, to implement a confirmation protocol

Each DL_DATA_REQ primitive conveys a DLSDU from the local DLS user to the DLS provider.
Similarly, each DL_DATA_IND primitive conveys a DLSDU from the DLS provider to the
remote DLS user. The normal flow of messages is illustrated in the figure below.

DL_DATA
indication

DL_DATA
request

Figure 2-17 Normal Data Transfer

18 Open Group Technical Specification (2000)

DLPI Services Connection-mode Services

2.2.3 Connection Release Service

The connection release service provides for the DLS users or the DLS provider to initiate the
connection release. Connection release is an abortive operation, and any data in transit (has not
been delivered to the DLS user) may be discarded.

DL_DISCONNECT_REQ requests that a connection be released. DL_DISCONNECT_IND
informs the DLS user that a connection has been released. Normally, one DLS user requests
disconnection and the DLS provider issues an indication of the ensuing release to the other DLS
user, as illustrated by the message flow in the following figure.

DL_OK
acknowledge

DL_DISCONNECT
indication

DL_DISCONNECT
request

Figure 2-18 Connection Release Invoked by DLS User

The next figure illustrates that when two DLS users independently invoke the connection release
service, neither receives a DL_DISCONNECT_IND.

DL_OK
acknowledge

DL_DISCONNECT
request

DL_OK
acknowledge

DL_DISCONNECT
request

Figure 2-19 Simultaneous Connectioin Release by DLS Users

The next figure illustrates that when the DLS provider initiates the connection release service,
each DLS user receives a DL_DISCONNECT_IND.

DL_DISCONNECT
indication

DL_DISCONNECT
indication

Figure 2-20 Connection Release Invoked by DLS Provider

Data Link Provider Interface (DLPI), Version 2 19

Connection-mode Services DLPI Services

The next figure illustrates that when the DLS provider and the local DLS user simultaneously
invoke the connection release service, the remote DLS user receives a DL_DISCONNECT_IND.

DL_OK
acknowledge

DL_DISCONNECT
indication

DL_DISCONNECT
request

Figure 2-21 Simultaneous Connection Release by DLS User & DLS Provider

2.2.4 Reset Service

The reset service may be used by the DLS user to resynchronize the use of a data link connection,
or by the DLS provider to report detected loss of data unrecoverable within the data link service.

Invocation of the reset service will unblock the flow of DLSDUs if the data link connection is
congested; DLSDUs may be discarded by the DLS provider. The DLS user or users that did not
invoke the reset will be notified that a reset has occurred. A reset may require a recovery
procedure to be performed by the DLS users.

The interaction between each DLS user and the DLS provider will be one of the following:

• a DL_RESET_REQ from the DLS user, followed by a DL_RESET_CON from the DLS
provider

• a DL_RESET_IND from the DLS provider, followed by a DL_RESET_RES from the DLS user.

The DL_RESET_REQ acts as asynchronization mark in the stream of DLSDUs that are
transmitted by the issuing DLS user; the DL_RESET_IND acts as asynchronization mark in the
stream of DLSDUs that are received by the peer DLS user. Similarly, the DL_RESET_RES acts as
asynchronization mark in the stream of DLSDUs that are transmitted by the responding DLS
user; the DL_RESET_CON acts as a synchronization mark in the stream of DLSDUs that are
received by the DLS user which originally issued the reset.

The resynchronizing properties of the reset service are that:

• No DLSDU transmitted by the DLS user before the synchronization mark in that transmitted
stream will be delivered to the other DLS user after the synchronization mark in that received
stream.

• The DLS provider will discard all DLSDUs submitted before the issuing of the
DL_RESET_REQ that have not been delivered to the peer DLS user when the DLS provider
issues the DL_RESET_IND.

• The DLS provider will discard all DLSDUs submitted before the issuing of the
DL_RESET_RES that have not been delivered to the initiator of the DL_RESET_REQ when
the DLS provider issues the DL_RESET_CON.

• No DLSDU transmitted by a DLS user after the synchronization mark in that transmitted
stream will be delivered to the other DLS user before the synchronization mark in that
received stream.

20 Open Group Technical Specification (2000)

DLPI Services Connection-mode Services

The complete message flow depends on the origin of the reset, which may be the DLS provider
or either DLS user. The following figure illustrates the message flow for a reset invoked by one
DLS user.

DL_RESET
confirm

DL_RESET
response

DL_RESET
indication

DL_OK
acknowledge

DL_RESET
request

Figure 2-22 Connection Reset Invoked by DLS User

The following figure illustrates the message flow for a reset invoked by both DLS users
simultaneously.

DL_RESET
confirm

DL_RESET
request

DL_RESET
confirm

DL_RESET
request

Figure 2-23 Simultaneous Connection Reset Invoked by DLS User

Data Link Provider Interface (DLPI), Version 2 21

Connection-mode Services DLPI Services

The following figure illustrates the message flow for a reset invoked by the DLS provider.

DL_RESET
indication

DL_RESET
indication

DL_OK
acknowledge

DL_RESET
response

DL_OK
acknowledge

DL_RESET
response

Figure 2-24 Connectioon Reset Invoked by DLS Provider

The following figure illustrates the message flow for a reset invoked simultaneously by one DLS
user and the DLS provider.

DL_RESET
indication

DL_RESET
confirm

DL_RESET
response

DL_OK
acknowledge

DL_RESET
request

Figure 2-25 Simultaneous Connection Reset by DLS User & DLS Provider

22 Open Group Technical Specification (2000)

DLPI Services Connectionless-mode Services

2.3 Connectionless-mode Services
The connectionless-mode services enable a DLS user to transfer units of data to peer DLS users
without incurring the overhead of establishing and releasing a connection. The connectionless
service does not, however, guarantee reliable delivery of data units between peer DLS users (e.g.
lack of flow control may cause buffer resource shortages that result in data being discarded) .

Once a stream has been initialized via the local management services, it may be used to send and
receive connectionless data units.

2.3.1 Connectionless Data Transfer Service

The connectionless data transfer service provides for the exchange of user data (DLSDUs) in
either direction or in both directions simultaneously without having to establish a data link
connection. Data transfer is neither acknowledged nor confirmed, and there is no end-to-end
flow control provided. As such, the connectionless data transfer service cannot guarantee
reliable delivery of data. However, a specific DLS provider can provide assurance that messages
will not be lost, duplicated, or reordered.

DL_UNITDATA_REQ conveys one DLSDU to the DLS provider. DL_UNITDATA_IND conveys
one DLSDU to the DLS user. The normal flow of messages is illustrated in the figure below.

DL_UNITDATA
indication

DL_UNITDATA
request

Figure 2-26 Connectionless Data Transfer

2.3.2 QOS Management Service

The QOS (Quality of Service) management service enables a DLS user to specify the quality of
service it can expect for each invocation of the connectionless data transfer service. The
DL_UDQOS_REQ directs the DLS provider to set the QOS parameters to the specified values.
The normal flow of messages is illustrated in the figure below.

DL_OK
acknowledge

DL_UDQOS
request

Figure 2-27 QOS Service

Data Link Provider Interface (DLPI), Version 2 23

Connectionless-mode Services DLPI Services

2.3.3 Error Reporting Service

The connectionless-mode error reporting service may be used to notify a DLS user that a
previously sent data unit either produced an error or could not be delivered. This service does
not, however, guarantee that an error indication will be issued for every undeliverable data unit.

DL_UDERROR
indication

Figure 2-28 Error Reporting Service

2.3.4 XID and TEST Service

The XID and TEST service enables the DLS User to issue an XID or TEST request to the DLS
Provider. On receiving a response for the XID or TEST frame transmitted to the peer DLS
Provider, the DLS Provider sends up an XID or TEST confirmation primitive to the DLS User. On
receiving an XID or TEST frame from the peer DLS Provider, the local DLS Provider sends up an
XID or TEST indication respectively to the DLS User. The DLS User must respond with an XID
or TEST response primitive.

If the DLS User requested automatic handling of the XID or TEST response, at bind time, the
DLS Provider will send up an error acknowledgement on receiving an XID or TEST request.
Also, no indications will be generated to the DLS User on receiving XID or TEST frames from the
remote side.

The normal flow of messages is illustrated in the figures below.

DL_XID
confirm

DL_XID
response

DL_XID
indication

DL_XID
request

Figure 2-29 XID Service

24 Open Group Technical Specification (2000)

DLPI Services Connectionless-mode Services

DL_TEST
confirm

DL_TEST
response

DL_TEST
indication

DL_TEST
request

Figure 2-30 TEST Service

Data Link Provider Interface (DLPI), Version 2 25

Acknowledged Connectionless-mode Services DLPI Services

2.4 Acknowledged Connectionless-mode Services
The acknowledged connectionless-mode services are designed for general use for the reliable
transfer of informations between peer DLS Users. These services are intended for applications
that require acknowledgement of cross-LAN data unit transfer, but wish to avoid the complexity
that is viewed as being associated with the connection-mode services. Although the exchange
service is connectionless, insequence delivery is guaranteed for data sent by the initiating
station.

2.4.1 Acknowledged Connectionless-mode Data Transfer Services

The acknowledged connectionless-mode data transfer services provide the means by which the
DLS Users can exchange DLSDUs which are acknowledged at the LLC sublayer, without the
establishment of a Data Link connection. The services provide a means by which a local DLS
User can send a data unit to the peer DLS User, request a previously prepared data unit, or
exchange data units with the peer DLS User.

DL_DATA_ACK_STATUS
indication

DL_DATA_ACK
indication

DL_DATA_ACK
request

Figure 2-31 Acknowledged Connectionless-Mode DU Transmission Service

The next figure illustrates the acknowledged connectionless-mode data unit exchange service.

DL_REPLY_STATUS
indication

DL_REPLY
indication

DL_REPLY
request

Figure 2-32 Acknowledged Connectionless-Mode DU Exchange Service

26 Open Group Technical Specification (2000)

DLPI Services Acknowledged Connectionless-mode Services

The next figure illustrates the Reply Data Unit Preparation service.

DL_REPLY_UPDATE_STATUS
indication

DL_REPLY_UPDATE
request

Figure 2-33 Acknowledged Connectionless-Mode RDU Preparation Service

2.4.2 QOS Management Service

The Quality of Service (QOS) management service enables a DLS User to specify the quality of
service it can expect for each invocation of the acknowledged connectionless data transfer
service. The DL_UDQOS_REQ directs the DLS provider to set the QOS parameters to the
specified values. The normal flow of messages is illustrated in Section 2.3.2 on page 23).

2.4.3 Error Reporting Service

The acknowledged connectionless mode error reporting service is the same as the
unacknowledged connectionless-mode error reporting service. For the message flow, refer to
Section 2.3.3 on page 24.

Data Link Provider Interface (DLPI), Version 2 27

Example DLPI Services

2.5 Example
To bring together all the the items described in this chapter, the following example illustrates the
primitives that flow during a complete, connection-mode sequence between stream open and
stream close.

DL_CONNECT
confirm

DL_DATA
indication

DL_CONNECT
response

DL_DATA
request

DL_CONNECT
indication

DL_DATA
indication

DL_OK
acknowledge

DL_CONNECT
request

DL_DATA
request

DL_BIND
acknowledge

DL_OK
acknowledge

DL_OK
acknowledge

DL_OK
acknowledge

DL_OK
acknowledge

DL_BIND
request

DL_DETACH
request

DL_ATTACH
request

DL_UNBIND
request

DL_BIND
acknowledge

DL_DISCONNECT
indication

DL_OK
acknowledge

DL_OK
acknowledge

DL_OK
acknowledge

DL_BIND
request

DL_DISCONNECT
request

DL_DETACH
request

DL_ATTACH
request

DL_UNBIND
request

Figure 2-34 A Connection-mode Example

28 Open Group Technical Specification (2000)

DLPI Services Example

Discard this page.

Data Link Provider Interface (DLPI), Version 2 29

Example DLPI Services

Discard this page too.

30 Open Group Technical Specification (2000)

Chapter 3

DLPI Primitives

The kernel-level interface to the data link layer defines a STREAMS-based message interface
between the provider of the data link service (DLS provider) and the consumer of the data link
service (DLS user). STREAMS provides the mechanism in which DLPI primitives may be passed
between the DLS user and DLS provider.

Before DLPI primitives can be passed between the DLS user and the DLS provider, the DLS user
must establish a stream to the DLS provider using open(). The DLS provider must therefore be
configured as a STREAMS driver. When interactions between the DLS user and DLS provider
have completed, the stream may be closed.

The STREAMS messages used to transport data link service primitives across the interface have
one of the following formats:

• One M_PROTO message block followed by zero or more M_DATA blocks. The M_PROTO
message block contains the data link layer service primitive type and all relevant parameters
associated with the primitive. The M_DATA block(s) contain any DLS user data that might be
associated with the service primitive.

• One M_PCPROTO message block containing the data link layer service primitive type and
all relevant parameters associated with the service primitive.

• One or more M_DATA message blocks conveying user data.

The information contained in the M_PROTO or M_PCPROTO message blocks must begin on a
byte boundary that is appropriate for structure alignment (for example, word-aligned on the
AT&T 3B2 Computer). STREAMS will allocate buffers that begin on such a boundary. However,
these message blocks may contain information whose representation is described by a length
and an offset within the block. An example is the DLSAP address (dl_addr_length and
dl_addr_offset) in the DL_BIND_ACK primitive. The offset of such information within the
message block is not guaranteed to be properly aligned for casting the appropriate data type
(such as an int or a struct). Appendix B defines the sequence in which DLPI primitives can be
passed between DLS user and DLS provider, and Appendix C summarizes the precedence rules
associated with each primitive for ordering the primitives on the DLS provider and DLS user
queues.

The following sections describe the format of the primitives that support the services described
in the previous chapter. The primitives are grouped into four general categories for presentation:

• Local Management Service Primitives

• Connection-mode Service Primitives

• Connectionless-mode Service Primitives

• Acknowledged Connectionless-mode Service Primitives

Three types are used to build the DLPI primitives. The normative definitions of t_scalar_t and
t_uscalar_t are to be found in the Networking Services Specification (see the referenced XNS
specification), but are repeated here for informational purposes. uint16_t is one of the fixed
width types defined in <sys/inttypes.h>.

Data Link Provider Interface (DLPI), Version 2 29

DLPI Primitives

t_scalar_t and t_uscalar_t are, respectively, a signed and an unsigned opaque integral type of
equal length of at least 32 bits1.

1. To forestall portability problems, it is recommended that applications should not use values larger than 232 − 1.

30 Open Group Technical Specification (2000)

DLPI Primitives Local Management Service Primitives

3.1 Local Management Service Primitives
This section describes the local management service primitives that are common to the
connection , connectionless and acknowledged connectionless service modes. These primitives
support the Information Reporting, Attach, Bind, Enabling/Disabling of multicast addresses,
and Turning On/Off the promiscuous mode. Once a stream has been opened by a DLS user,
these primitives initialize the stream, preparing it for use.

3.1.1 PPA Initialization/De-initialization

The PPA associated with each stream must be initialized before the DLS provider can transfer
data over the medium. The initialization and de-initialization of the PPA is a network
management issue, but DLPI must address the issue because of the impact such actions will
have on a DLS user. More specifically, DLPI requires the DLS provider to initialize the PPA
associated with a stream at some point before it completes the processing of the DL_BIND_REQ.
Guidelines for initialization and de-initialization of a PPA by a DLS provider are presented here.

A DLS provider may initialize a PPA using either of the following methods:

• pre-initialized by some network management mechanism before the DL_BIND_REQ is
received

• automatic initialization on receipt of a DL_BIND_REQ or DL_ATTACH_REQ.

A specific DLS provider may support either of these methods, or possibly some combination of
the two, but the method implemented has no impact on the DLS user. From the DLS user’s
viewpoint, the PPA is guaranteed to be initialized on receipt of a DL_BIND_ACK. For automatic
initialization, this implies that the DL_BIND_ACK may not be issued until the initialization has
completed.

If pre-initialization has not been performed and/or automatic initialization fails, the DLS
provider will fail the DL_BIND_REQ. Two errors, DL_INITFAILED and DL_NOTINIT, may be
returned in the DL_ERROR_ACK response to a DL_BIND_REQ if PPAinitialization fails.
DL_INITFAILED is returned when a DLS provider supports automatic PPA initialization, but
the initialization attempt failed. DL_NOTINIT is returned when the DLS provider requires pre-
initialization, but the PPA is not initialized before the DL_BIND_REQ is received.

A DLS provider may handle PPA de-initialization using one of the following methods:

• automatic de-initialization upon receipt of the final DL_DETACH_REQ (for style 2
providers) or DL_UNBIND_REQ (for style 1 providers), or upon closing of the last stream
associated with the PPA

• automatic de-initialization after expiration of a timer following the last DL_DETACH_REQ,
DL_UNBIND_REQ, or close as appropriate

• no automatic de-initialization;administrative intervention is required to de-initialize the PPA
at some point after it is no longer being accessed.

A specific DLS provider may support any of these methods, or possibly some combination of
them, but the method implemented has no impact on the DLS user. From the DLS user’s
viewpoint, the PPA is guaranteed to be initialized and available for transmission until it closes or
unbinds the stream associated with the PPA. DLS provider-specific addendum documentation
should describe the method chosen for PPA initialization and de-initialization.

Data Link Provider Interface (DLPI), Version 2 31

Local Management Service Primitives DLPI Primitives

3.1.2 List of Local Management Service Primitives

The local management service primitives are listed below and are defined in the following man-
pages:

DL_INFO_REQ
DL_INFO_ACK
DL_ATTACH_REQ
DL_DETACH_REQ
DL_BIND_REQ
DL_BIND_ACK
DL_UNBIND_REQ
DL_SUBS_BIND_REQ
DL_SUBS_BIND_ACK
DL_SUBS_UNBIND_REQ
DL_ENABMULTI_REQ
DL_DISABMULTI_REQ
DL_PROMISCON_REQ
DL_PROMISCOFF_REQ
DL_OK_ACK
DL_ERROR_ACK

32 Open Group Technical Specification (2000)

DLPI Primitives DL_INFO_REQ

NAME
DL_INFO_REQ (dl_info_req_t) — request information of the DLS provider about the DLPI
stream. This information includes a set of provider-specific parameters, as well as the current
state of the interface.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure:

typedef struct {
t_uscalar_t dl_primitive;

} dl_info_req_t;

PARAMETERS

dl_primitive
conveys DL_INFO_REQ.

STATE
The message is valid in any state in which a local acknowledgement is not pending, as described
in Appendix B on page 133.

NEW STATE
The resulting state is unchanged.

RESPONSE
The DLS provider responds to the information request with a DL_INFO_ACK.

Data Link Provider Interface (DLPI), Version 2 33

DL_INFO_ACK DLPI Primitives

NAME
DL_INFO_ACK (dl_info_ack_t) — this message is sent in response to DL_INFO_REQ; it conveys
information about the DLPI stream to the DLS user.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_max_sdu;
t_uscalar_t dl_min_sdu;
t_uscalar_t dl_addr_length;
t_uscalar_t dl_mac_type;
t_uscalar_t dl_reserved;
t_uscalar_t dl_current_state;
t_scalar_t dl_sap_length;
t_uscalar_t dl_service_mode;
t_uscalar_t dl_qos_length;
t_uscalar_t dl_qos_offset;
t_uscalar_t dl_qos_range_length;
t_uscalar_t dl_qos_range_offset;
t_uscalar_t dl_provider_style;
t_uscalar_t dl_addr_offset;
t_uscalar_t dl_version;
t_uscalar_t dl_brdcst_addr_length;
t_uscalar_t dl_brdcst_addr_offset;
t_uscalar_t dl_growth;

} dl_info_ack_t;

PARAMETERS

dl_primitive
conveys DL_INFO_ACK.

dl_max_sdu
conveys the maximum number of bytes that may be transmitted in a DLSDU. This value
must be a positive integer that is greater than or equal to the value of dl_min_sdu .

dl_min_sdu
conveys the minimum number of bytes that may be transmitted in a DLSDU. The value is
never less than one.

dl_addr_length
conveys the length, in bytes, of the provider’s DLSAP address. In the case of ahierarchical
subsequent bind, the length returned is the total length, that is, Physical address + SAP
+subsequent address length.

dl_mac_type
conveys the type of medium supported by this DLPI stream2. Possible values include:

2. Readers should note that the list of data links supported by the interface may be augmented and is published on the World-Wide
Web in U019 at http://www.xopen.org (under Sales and Ordering). This Corrigendum will contain relevant additional
information such as recognised implementors’ agreements/guidelines for common data link providers.

34 Open Group Technical Specification (2000)

DLPI Primitives DL_INFO_ACK

DL_CSMACD
The medium is Carrier Sense Multiple Access with Collision Detection (ISO 8802/3).

DL_TPB
The medium is Token-Passing Bus (ISO 8802/4).

DL_TPR
The medium is Token-Passing Ring (ISO 8802/5).

DL_METRO
The medium is Metro Net (ISO 8802/6).

DL_ETHER
The medium is Ethernet Bus.

DL_HDLC
The medium is a bit synchronous communication line.

DL_CHAR
The medium is a character synchronous communication line (for example, BISYNC).

DL_CTCA
The medium is a channel-to-channel adapter.

DL_FDDI
The medium is a Fiber Distributed Data Interface.

DL_FC
The medium is Fiber Channel.

DL_ATM
The medium is Asynchronous Transfer Mode.

DL_IPATM
The medium is Internet IP over Asynchronous Transfer Mode, RFC 1577.

DL_X25
The medium is X.25 LAPB.

DL_IPX25
The medium is Internet IP over X.25, RFC 1356.

DL_ISDN
The medium is ISDN.

DL_HIPPI
The medium is High Performance Parallel Interface.

DL_100VG
The medium is 100 Based VG Ethernet.

DL_100VGTPR
The medium is 100 Based VG Token Ring.

DL_ETH_CSMA
The medium is capable of both ISO 8802/3 and Ethernet.

DL_100BT
The medium is 100 Base T Ethernet.

DL_FRAME
The medium is Frame Relay LAPF.

Data Link Provider Interface (DLPI), Version 2 35

DL_INFO_ACK DLPI Primitives

DL_MPFRAME
The medium is Multi-Protocol over Frame Relay encapsulation, RFC 1490.

DL_ASYNC
The medium is a bit asynchronous communication line.

DL_LOOP
The medium is a software loopback.

DL_OTHER
Any other medium that is not listed above.

dl_mac_type values above 0x80000000 are available for private or experimental use and will
not be defined by this Specification.

dl_reserved
is a reserved field whose value must be set to zero.

dl_current_state
conveys the state of the DLPI interface for the stream when the DLS provider issued this
acknowledgement. See Appendix B for a list of DLPI states and an explanation of each.

dl_sap_length
indicates the current length of the SAP component of the DLSAP address. It may have a
negative, zero or positive value. A positive value indicates the ordering of the SAP and
PHYSICAL component within the DLSAP address as SAP component followed by
PHYSICAL component. A negative value indicates PHYSICAL followed by the SAP. A zero
value indicates that no SAP has yet been bound. The absolute value of the dl_sap_length
provides the length of the SAP component within the DLSAP address.

dl_service_mode
if returned before the DL_BIND_REQ is processed, this conveys which service modes (
connection-mode,connectionless-mode or acknowledged connectionless-mode, or any
comibination of these modes) the DLS provider can support. It contains a bit-mask
specifying one or more than one of the following values:

DL_CODLS connection-oriented data link service

DL_CLDLS connectionless data link service

DL_ACLDLS acknowledged connectionless data link service.

Once a specific service mode has been bound to the stream, this field returns that specific
service mode.

dl_qos_length
conveys the length, in bytes, of the negotiated/selected values of the quality of service
(QOS) parameters. Section 5, Quality of Data Link Service , describes quality of service and
its associated parameters completely. For connection-mode service, the returned values are
those agreed during negotiation. For connectionless-mode service, the values are those
currently selected by the DLS user. If quality of service has not yet been negotiated, default
values will be returned; these values correspond to those that will be applied by the DLS
provider on a connect request in connection-mode service, or those that will be applied to
each data unit transmission in connectionless-mode service. If the DLS provider supports
both connection-mode and connectionless-mode services but the DLS user has not yet
bound a specific service mode, the DLS provider may return either connection-mode or
connectionless-mode QOS parameter values.

36 Open Group Technical Specification (2000)

DLPI Primitives DL_INFO_ACK

The QOS values are conveyed in the structures defined in Section 4.4 on page 120. For any
parameter the DLS provider does not support or cannot determine, the corresponding entry
will be set to DL_UNKNOWN. If the DLS provider does not support any QOS parameters,
this length field will be set to zero.

dl_qos_offset
conveys the offset from the beginning of the M_PCPROTO block where the current quality
of service parameters begin.

dl_qos_range_length
conveys the length, in bytes, of the available range of QOS parameter values supported by
the DLS provider. Forconnection-mode service, this is the range available to the calling DLS
user in a connect request. Forconnectionless-mode, this is the range available for each data
unit transmission. If the DLS provider supports both connection-mode and connectionless-
mode services but the DLS user has not yet bound a specific service mode, the DLS provider
may return either connection-mode or connectionless-mode QOS parameter values.

The range of available QOS values is conveyed in the structures defined in Section 4.4 on
page 120. For any parameter the DLS provider does not support or cannot determine, the
corresponding entry will be set to DL_UNKNOWN. If the DLS provider does not support
any QOS parameters, this length field will be set to zero.

dl_qos_range_offset
conveys the offset from the beginning of the M_PCPROTO block where the available range
of quality of service parameters begins.

dl_provider_style
conveys the style of DLS provider associated with the DLPI stream (see Section 1.4.1 on
page 6). The following provider classes are defined:

DL_STYLE1 The PPA is implicitly attached to the DLPI stream by opening the
appropriate major/minor device number.

DL_STYLE2 The DLS user must explicitly attach a PPA to the DLPI stream using
DL_ATTACH_REQ.

DLS users implemented in a protocol-independent manner must access this parameter to
determine whether the DLS attach service must be invoked explicitly.

dl_addr_offset
conveys the offset of the address that is bound to the associated stream. If the DLS user
issues a DL_INFO_REQ prior to binding a DLSAP, the value of dl_addr_len will be 0 and
consequently indicate that there has been no address bound.

dl_version
indicates the current version of the dlpi that is supported.

dl_brdcst_addr_length
indicates the length of the physical broadcast address.

dl_brdcst_addr_offset
indicates the offset of the physical broadcast address from the beginning of the PCPROTO
block.

dl_growth
conveys a growth field for future use. The value of this field will be zero.

Data Link Provider Interface (DLPI), Version 2 37

DL_INFO_ACK DLPI Primitives

STATE
The message is valid in any state in response to a DL_INFO_REQ.

NEW STATE
The resulting state is unchanged.

38 Open Group Technical Specification (2000)

DLPI Primitives DL_ATTACH_REQ

NAME
DL_ATTACH_REQ (dl_attach_req_t) — requests the DLS provider associate a physical point of
attachment (PPA) with astream. DL_ATTACH_REQ is needed for style 2 DLS providers to
identify the physical medium over which communication will transpire. The request may not be
issued to a style 1 DLS provider; doing so may cause errors.

The DLS provider may initialize the physical line on receipt of this primitive or the
DL_BIND_REQ. Otherwise, the line must be initialized through some management mechanism
before this request is issued by the DLS user. Either way, the physical link must be initialized
and ready for use on successful completion of the DL_BIND_REQ.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_ppa;

} dl_attach_req_t;

PARAMETERS

dl_primitive
conveys DL_ATTACH_REQ.

dl_ppa
conveys the identifier of the physical point of attachment to be associated with the stream.
The format of the identifier is provider-specific, and it must contain sufficient information to
distinguish the desired PPA from all possible PPAs on a system. At a minimum, this must
include identification of the physical medium over which communication will transpire. For
media that multiplex multiple channels over a single physical medium, this identifier
should also specify a specific channel to be used for communication (where each channel on
a physical medium is associated with a separate PPA).

Because of the provider-specific nature of this value, DLS user software that is to be
protocol independent should avoid hard-coding the PPA identifier. The DLS user should
retrieve the necessary PPA identifier from some other entity (such as a management entity)
and insert it without inspection into the DL_ATTACH_REQ.

STATE
The message is valid in state DL_UNATTACHED.

NEW STATE
The resulting state is DL_ATTACH_PENDING.

RESPONSE
If the attach request is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_UNBOUND. If the request fails, message DL_ERROR_ACK is returned and the resulting
state is unchanged.

ERRORS

DL_ACCESS
The DLS user did not have proper permission to use the requested PPA.

DL_BADPPA
The specified PPA is invalid.

DL_OUTSTATE
The primitive was issued from an invalid state.

Data Link Provider Interface (DLPI), Version 2 39

DL_ATTACH_REQ DLPI Primitives

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

40 Open Group Technical Specification (2000)

DLPI Primitives DL_DETACH_REQ

NAME
DL_DETACH_REQ (dl_detach_req_t) — for style 2 DLS providers, this requests the DLS provider
detach a physical point of attachment (PPA) from a stream. The request may not be issued to a
style 1 DLS provider; doing so may cause errors.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
t_uscalar_t dl_primitive;

} dl_detach_req_t;

PARAMETERS

dl_primitive
conveys DL_DETACH_REQ.

STATE
The message is valid in state DL_UNBOUND.

NEW STATE
The resulting state is DL_DETACH_PENDING.

RESPONSE
If the detach request is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_UNATTACHED. If the request fails, message DL_ERROR_ACK is returned and the resulting
state is unchanged.

ERRORS

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Data Link Provider Interface (DLPI), Version 2 41

DL_BIND_REQ DLPI Primitives

NAME
DL_BIND_REQ (dl_bind_req_t) — requests the DLS provider bind a DLSAP to the stream. The
DLS user must identify the address of the DLSAP to be bound to the stream. Forconnection-
mode service, the DLS user also indicates whether it will accept incoming connection requests
on the stream. Finally, the request directs the DLS provider to activate the stream associated
with the DLSAP.

A stream is viewed as active when the DLS provider may transmit and receive protocol data
units destined to or originating from the stream. The PPA associated with each stream must be
initialized upon completion of the processing of the DL_BIND_REQ (see Section 3.1.1 on page
31). More specifically, the DLS user is ensured that the PPA is initialized when the
DL_BIND_ACK is received. If the PPA cannot be initialized, the DL_BIND_REQ will fail.

A stream may be bound as a"connection management" stream, such that it will receive all
connect requests that arrive through a given PPA (see Section 1.5 on page 8). In this case, the
dl_sap will be ignored.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_sap;
t_uscalar_t dl_max_conind;
ushort dl_service_mode;
ushort dl_conn_mgmt;
t_uscalar_t dl_xidtest_flg;

} dl_bind_req_t;

PARAMETERS

dl_primitive
conveys DL_BIND_REQ.

dl_sap
conveys sufficient information to identify the DLSAP that will be bound to the DLPI stream
(see Section 1.4 on page 6 for a description of DLSAP addresses). The format of this
information is specific to a given DLS provider, and may contain the full DLSAP address or
some portion of that address sufficient to uniquely identify the DLSAP in question. The full
address of the bound DLSAP will be returned in the DL_BIND_ACK.

The following rules are used by the DLS provider when binding a DLSAP address:

• The DLS provider must define and manage its DLSAP address space.

• DLPI allows the same DLSAP to be bound to multiple streams, but a given DLS provider
may need to restrict its address space to allow one stream per DLSAP.

• The DLS provider may not be able to bind the specified DLSAP address for one of the
following reasons:

1. the DLS provider may statically associate a specific DLSAP with each stream

2. the DLS provider may only support one stream per DLSAP and the DLS user
attempted to bind a DLSAP that was already bound to another stream.

In case of reason 1, the value of dl_sap is ignored by the DLS provider and the
DL_BIND_ACK returns the DLSAP address that is already associated with the stream.
In case of reason 2, if the DLS provider cannot bind the given DLSAP to the stream, it

42 Open Group Technical Specification (2000)

DLPI Primitives DL_BIND_REQ

may attempt to choose an alternate DLSAP and return that on the DL_BIND_ACK. If an
alternate DLSAP cannot be chosen, the DLS provider will return a DL_ERROR_ACK and
set dl_errno to DL_NOADDR.

Because of the provider-specific nature of the DLSAP address, DLS user software that is to
be protocol independent should avoid hard-coding this value. The DLS user should retrieve
the necessary DLSAP address from some other entity (such as a management entity or
higher layer protocol entity) and insert it without inspection into the DL_BIND_REQ.

dl_max_conind
conveys the maximum number of outstanding DL_CONNECT_IND messages allowed on
the DLPI stream. If the value is zero, the stream cannot accept any DL_CONNECT_IND
messages. If greater than zero, the DLS user will accept DL_CONNECT_IND messages up
to the given value before having to respond with a DL_CONNECT_RES or a
DL_DISCONNECT_REQ (see Section 3.2.2 on page 59 for details on how this value is used
to support multi-threaded connect processing). The DLS provider may not be able to
support the value supplied in dl_max_conind, as specified by the following rules:

• If the provider cannot support the specified number of outstanding connect indications,
it should set the value down to a number it can support.

• Only one stream that is bound to the indicated DLSAP may have an allowed number of
maximum outstanding connect indications greater than zero. If a DL_BIND_REQ
specifies a value greater than zero, but another stream has already bound itself to the
DLSAP with a value greater than zero, the DLS provider will fail the request, setting
dl_errno to DL_BOUND on the DL_ERROR_ACK.

• If a stream with dl_max_conind greater than zero is used to accept a connection, the
stream will be found busy during the duration of the connection, and no other streams
may be bound to the same DLSAP with a value of dl_max_conind greater than zero. This
restriction prevents more than one stream bound to the same DLSAP from receiving
connect indications and accepting connections. Accepting a connection on such a stream
is only allowed if there is just a single outstanding connect indication being processed.

• A DLS user should always be able to request adl_max_conind value of zero, since this
indicates to the DLS provider that the stream will only be used to originate connect
requests.

• A stream with a negotiated value of dl_max_conind that is greater than zero may not
originate connect requests.

This field is ignored in connectionless-mode service.

dl_service_mode
conveys the desired mode of service for this stream, and may contain one of the following:

DL_CODLS connection-oriented data link service

DL_CLDLS connectionless data link service

DL_ACLDLS acknowledged connectionless data link service.

If the DLS provider does not support the requested service mode, a DL_ERROR_ACK will
be generated, specifying DL_UNSUPPORTED.

dl_conn_mgmt
if non-zero, indicates that the stream is the ‘‘connection management’’ stream for the PPA
to which the stream is attached. When an incoming connect request arrives, the DLS
provider will first look for a stream bound with dl_max_conind greater than zero that is

Data Link Provider Interface (DLPI), Version 2 43

DL_BIND_REQ DLPI Primitives

associated with the destination DLSAP. If such a stream is found, the connect indication will
be issued on that stream. Otherwise, the DLS provider will issue the connect indication on
the ‘‘connection management’’ stream for that PPA, if one exists. Only one ‘‘connection
management’’ stream is allowed per PPA, so an attempt to bind a second connection
management stream on a PPA will fail with the DLPI error set to DL_BOUND. When
l_conn_mgmt is non-zero, the value of dl_sap will be ignored. In connectionless-mode
service, dl_conn_mgmt is ignored by the DLS provider.

dl_xidtest_flg
indicates to the DLS Provider that XID and/or TEST responses for this stream are to be
automatically generated by the DLS Provider. The DLS Provider will not generate
DL_XID_IND and/or DL_TEST_IND, and will error a DL_XID_REQ and/or
DL_TEST_REQ. If the DLS Provider does not support automatic handling of XID and/or
TEST responses, a DL_ERROR_ACK will be generated, specifying DL_NOAUTO,
DL_NOXIDAUTO or DL_NOTESTAUTO. If the Provider receives an XID or TEST request
from the DLS User, a DL_ERROR_ACK will be generated specifying DL_XIDAUTO or
DL_TESTAUTO respectively.

The dl_xidtest_flg contains a bit-mask specifying zero or more of the following values:

DL_AUTO_XID automatically respond to XID commands

DL_AUTO_TEST automatically respond to TEST commands.

STATE
The message is valid in state DL_UNBOUND.

NEW STATE
The resulting state is DL_BIND_PENDING.

RESPONSE
If the bind request is successful, DL_BIND_ACK is sent to the DLS user resulting in state
DL_IDLE.

If the request fails, message DL_ERROR_ACK is returned and the resulting state is unchanged.

ERRORS

DL_ACCESS
The DLS user did not have proper permission to use the requested DLSAP address.

DL_BADADDR
The DLSAP address information was invalid or was in an incorrect format.

DL_BOUND
The DLS user attempted to bind a second stream to a DLSAP with dl_max_conind greater
than zero, or the DLS user attempted to bind a second "connectionmanagement" stream to a
PPA.

DL_INITFAILED
Automatic initialization of the PPAfailed.

DL_NOTINIT
The PPA had not been initialized prior to this request.

DL_NOADDR
The DLS provider could not allocate a DLSAP address for this stream.

DL_NOAUTO
Automatic handling of XID and TEST responses not supported.

44 Open Group Technical Specification (2000)

DLPI Primitives DL_BIND_REQ

DL_NOTESTAUTO
Automatic handling of TEST response not supported.

DL_NOXIDAUTO
Automatic handling of XID response not supported.

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR

DL_UNSUPPORTED
The DLS provider does not support requested service mode on this stream. A system error
has occurred and the UNIX system error is indicated in the DL_ERROR_ACK.

Data Link Provider Interface (DLPI), Version 2 45

DL_BIND_ACK DLPI Primitives

NAME
DL_BIND_ACK (dl_bind_ack_t) — reports the successful bind of a DLSAP to a stream, and
returns the bound DLSAP address to the DLS user. This primitive is generated in response to a
DL_BIND_REQ.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_sap;
t_uscalar_t dl_addr_length;
t_uscalar_t dl_addr_offset;
t_uscalar_t dl_max_conind;
t_uscalar_t dl_xidtest_flg;

} dl_bind_ack_t;

PARAMETERS

dl_primitive
conveys DL_BIND_ACK.

dl_sap
conveys the DLSAP address information associated with the bound DLSAP. It corresponds
to the dl_sap field of the associated DL_BIND_REQ, which contains either part or all of the
DLSAP address. For that portion of the DLSAP address conveyed in the DL_BIND_REQ,
this field contains the corresponding portion of the address for the DLSAP that was actually
bound.

dl_addr_length
conveys the length of the complete DLSAP address that was bound to the DLPI stream (see
Section 1.4 on page 6 for a description of DLSAP addresses). The bound DLSAP is chosen
according to the guidelines presented under the description of DL_BIND_REQ.

dl_addr_offset
conveys the offset from the beginning of the M_PCPROTO block where the DLSAP address
begins.

dl_max_conind
conveys the allowed, maximum number of outstanding DL_CONNECT_IND messages to
be supported on the DLPI stream. If the value is zero, the stream cannot accept any
DL_CONNECT_IND messages. If greater than zero, the DLS user will accept
DL_CONNECT_IND messages up to the given value before having to respond with a
DL_CONNECT_RES or a DL_DISCONNECT_REQ. The rules for negotiating this value are
presented under the description of DL_BIND_REQ.

dl_xidtest_flg
conveys the XID and TEST responses supported by the provider.

DL_AUTO_XID XID response handled automatically

DL_AUTO_TEST TEST response handled automatically.

If no value is specified in dl_xidtest_flg , it indicates that automatic handling of XID and
TEST responses is not supported by the Provider.

46 Open Group Technical Specification (2000)

DLPI Primitives DL_BIND_ACK

STATE
The message is valid in state DL_BIND_PENDING.

NEW STATE
The resulting state is DL_IDLE.

Data Link Provider Interface (DLPI), Version 2 47

DL_UNBIND_REQ DLPI Primitives

NAME
DL_UNBIND_REQ (dl_unbind_req_t) — requests the DLS provider to unbind the DLSAP that
had been bound by a previous DL_BIND_REQ from this stream. If one or more DLSAPs were
bound to the stream using a DL_SUBS_BIND_REQ, and have not been unbound using a
DL_SUBS_UNBIND_REQ, the DL_UNBIND_REQ will unbind all the subesquent DLSAPs for
that stream along with the DLSAP bound using the previous DL_BIND_REQ.

At the successful completion of the request, the DLS user may issue a new DL_BIND_REQ for a
potentially new DLSAP.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
t_uscalar_t dl_primitive;

} dl_unbind_req_t;

PARAMETERS

dl_primitive
conveys DL_UNBIND_REQ.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is DL_UNBIND_PENDING.

RESPONSE
If the unbind request is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_UNBOUND. If the request fails, message DL_ERROR_ACK is returned and the resulting
state is unchanged.

ERRORS

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

48 Open Group Technical Specification (2000)

DLPI Primitives DL_SUBS_BIND_REQ

NAME
DL_SUBS_BIND_REQ (dl_subs_bind_req_t) — requests the DLS provider bind a subsequent
DLSAP to the stream. The DLS user must identify the address of the subsequent DLSAP to be
bound to the stream.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_subs_sap_offset;
t_uscalar_t dl_subs_sap_length;
t_uscalar_t dl_subs_bind_class;

} dl_subs_bind_req_t;

PARAMETERS

dl_primitive
conveys DL_SUBS_BIND_REQ.

dl_subs_sap_offset
conveys the offset of the DLSAP from the beginning of the M_PROTO block.

dl_subs_sap_length
conveys the length of the specified DLSAP.

dl_subs_bind_class
specifies either peer or hierarchical addressing:

DL_PEER_BIND
specifies peer addressing. The DLSAP specified is used in lieu of the DLSAP bound in
the BIND request.

DL_HIERARCHICAL_BIND
specifies hierarchical addressing. The DLSAP specified is used in addition to the
DLSAP specified using the BIND request.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is DL_SUBS_BIND_PND.

RESPONSE
If the subsequent bind request is successful, DL_SUBS_BIND_ACK is sent to the DLS user
resulting in state DL_IDLE. If the request fails, message DL_ERROR_ACK is returned and the
resulting state is unchanged.

ERRORS

DL_ACCESS
The DLS user did not have proper permission to use the requested DLSAP address.

DL_BADADDR
The DLSAP address information was invalid or was in an incorrect format.

DL_OUTSTATE
The primitive was issued from an invalid state.

Data Link Provider Interface (DLPI), Version 2 49

DL_SUBS_BIND_REQ DLPI Primitives

DL_SYSERR
A System error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

DL_TOOMANY
Limit exceeded on the maximum number of DLSAPs per stream.

DL_UNSUPPORTED
Requested addressing class not supported.

50 Open Group Technical Specification (2000)

DLPI Primitives DL_SUBS_BIND_ACK

NAME
DL_SUBS_BIND_ACK (dl_subs_bind_ack_t) — reports the succesful bind of a subsequent DLSAP
to a stream, and returns the bound DLSAP address to the DLS user. This primitive is generated
in response to a DL_SUBS_BIND_REQ.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_subs_sap_offset;
t_uscalar_t dl_subs_sap_length;

} dl_subs_bind_ack_t;

PARAMETERS

dl_primitive
conveys DL_SUBS_BIND_ACK.

dl_subs_sap_offset
conveys the offset of the DLSAP from the beginning of the M_PCPROTO block.

dl_subs_sap_length
conveys the length of the specified DLSAP.

STATE
The message is valid in state DL_SUBS_BIND_PND

NEW STATE
The resulting state is DL_IDLE.

Data Link Provider Interface (DLPI), Version 2 51

DL_SUBS_UNBIND_REQ DLPI Primitives

NAME
DL_SUBS_UNBIND_REQ (dl_subs_unbind_req_t) — requests the DLS Provider to unbind the
DLSAP that had been bound by aprevious DL_SUBS_BIND_REQ from this stream.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_subs_sap_offset;
t_uscalar_t dl_subs_sap_length;

} dl_subs_unbind_req_t;

PARAMETERS

dl_primitive
conveys DL_SUBS_UNBIND_REQ.

dl_subs_sap_offset
conveys the offset of the DLSAP from the beginning of the M_PROTO block.

dl_subs_sap_length
conveys the length of the specified DLSAP.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is DL_SUBS_UNBIND_PND.

RESPONSE
If the unbind request is successful, a DL_OK_ACK is sent to the DLS User. The resulting state is
DL_IDLE. If the request fails, message DL_ERROR_ACK is returned and the resulting state is
unchanged.

ERRORS

DL_BADADDR
The DLSAP address information was invalid or was in an incorrect format.

DL_OUTSTATE
The primitive was issued from an invalid state

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

52 Open Group Technical Specification (2000)

DLPI Primitives DL_ENABMULTI_REQ

NAME
DL_ENABMULTI_REQ (dl_enabmulti_req_t) — requests the DLS Provider to enable specific
multicast addresses on a per Stream basis. It is invalid for a DLS Provider to pass upstream
messages that are destined for any address other than those explicitly enabled on that Stream by
the DLS User.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_addr_length;
t_uscalar_t dl_addr_offset;

} dl_enabmulti_req_t;

PARAMETERS

dl_primitive
conveys DL_ENABMULTI_REQ

dl_addr_length
conveys the length of the multicast address

dl_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the multicast
address begins

STATE
This message is valid in any state in which a local acknowledgement is not pending with the
exception of DL_UNATTACH.

NEW STATE
The resulting state is unchanged.

RESPONSE
If the enable request is successful, a DL_OK_ACK is sent to the DLS user. If the request fails,
message DL_ERROR_ACK is returned and the resulting state is unchanged.

ERRORS

DL_BADADDR
Address information was invalid or was in an incorrect format.

DL_NOTSUPPORTED
The primitive is known, but not supported by the DLS Provider.

DL_OUTSTATE
The primitive was issued from an invalid state

DL_TOOMANY
Too many multicast address enable attempts. Limit exceeded.

Data Link Provider Interface (DLPI), Version 2 53

DL_DISABMULTI_REQ DLPI Primitives

NAME
DL_DISABMULTI_REQ (dl_disabmulti_req_t) — requests the DLS Provider to disable specific
multicast addresses on a per Stream basis.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_addr_length;
t_uscalar_t dl_addr_offset;

} dl_disabmulti_req_t;

PARAMETERS

dl_primitive
conveys DL_DISABMULTI_REQ

dl_addr_length
conveys the length of the physical address

dl_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the multicast
address begins

STATE
This message is valid in any state in which a local acknowledgement is not pending with the
exception of DL_UNATTACH.

NEW STATE
The resulting state is unchanged.

RESPONSE
If the disable request is successful, a DL_OK_ACK is sent to the DLS user. If the request fails,
message DL_ERROR_ACK is returned and the resulting state is unchanged.

ERRORS

DL_BADADDR
Address information was invalid or in an incorrect format.

DL_NOTENAB
Address specified is not enabled.

DL_NOTSUPPORTED
Primitive is known, but not supported by the DLS Provider.

DL_OUTSTATE
The primitive was issued from an invalid state.

54 Open Group Technical Specification (2000)

DLPI Primitives DL_PROMISCON_REQ

NAME
DL_PROMISCON_REQ (dl_promiscon_req_t) — this primitive requests the DLS Provider to
enable promiscuous mode on a per Stream basis, either at the physical level or at the SAP level.

The DL Provider will route all received messages on the media to the DLS User until either a
DL_DETACH_REQ or a DL_PROMISCOFF_REQ is received or the Stream is closed.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_level;

} dl_promiscon_req_t;

PARAMETERS

dl_primitive
conveys DL_PROMISCON_REQ

dl_level
indicates promiscuous mode at the physical or SAP level:

DL_PROMISC_PHYS
indicates promiscuous mode at the physical level

DL_PROMISC_SAP
indicates promiscuous mode at the SAP level

DL_PROMISC_MULTI
indicates promiscuous mode for all multicast addresses.

STATE
The message is valid in any state when there is no pending acknowledgement.

NEW STATE
The resulting state is unchanged.

RESPONSE
If enabling of promiscuous mode is successful, a DL_OK_ACK is returned. Otherwise, a
DL_ERROR_ACK is returned.

ERRORS

DL_NOTSUPPORTED
Primitive is known but not supported by the DLS Provider

DL_OUTSTATE
The primitive was issued from an invalid state

DL_SYSERR
A System error has occurred and the UNIX System error is indicated in the
DL_ERROR_ACK.

DL_UNSUPPORTED
Requested service is not supplied by the provider.

Data Link Provider Interface (DLPI), Version 2 55

DL_PROMISCOFF_REQ DLPI Primitives

NAME
DL_PROMISCOFF_REQ (dl_promiscoff_req_t) — this primitive requests the DLS Provider to
disable promiscuous mode on a per Stream basis, either at the physical level or at the SAP level.

SYNOPSIS
The message consists of one M_PROTO message block, which contains the following structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_level;

} dl_promiscoff_req_t;

PARAMETERS

dl_primitive
conveys DL_PROMISCOFF_REQ

dl_level
indicates promiscuous mode at the physical or SAP level:

DL_PROMISC_PHYS
indicates promiscuous mode at the physical level

DL_PROMISC_SAP
indicates promiscuous mode at the SAP level

DL_PROMISC_MULTI
indicates promiscuous mode for all multicast addresses.

STATE
The message is valid in any state in which the promiscuous mode is enabled and there is no
pending acknowledgement.

NEW STATE
The resulting state is unchanged.

RESPONSE
If the promiscuous mode disabling is successful, a DL_OK_ACK is returned. Otherwise, a
DL_ERROR_ACK is returned.

ERRORS

DL_NOTENAB
Mode not enabled.

DL_NOTSUPPORTED
Primitive is known but not supported by the DLS Provider

DL_OUTSTATE
The primitive was issued from an invalid state

DL_SYSERR
A System error has occurred and the UNIX System error is indicated in the
DL_ERROR_ACK.

56 Open Group Technical Specification (2000)

DLPI Primitives DL_OK_ACK

NAME
DL_OK_ACK (dl_ok_ack_t) — acknowledges to the DLS user that a previously issued request
primitive was received successfully. It is only initiated for those primitives that require a
positive acknowledgement.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correct_primitive;

} dl_ok_ack_t;

PARAMETERS

dl_primitive
conveys DL_OK_ACK.

dl_correct_primitive
identifies the successfully received primitive that is being acknowledged.

STATE
The message is valid in response to any of the following:

DL_ATTACH_REQ
DL_DETACH_REQ
DL_UNBIND_REQ,
DL_CONNECT_RES
DL_RESET_RES
DL_DISCON_REQ
DL_SUBS_UNBIND_REQ
DL_PROMISCON_REQ
DL_ENABMULTI_REQ
DL_DISABMULTI_REQ or
DL_PROMISCOFF_REQ

from any of several states as defined in Appendix B.

NEW STATE
The resulting state depends on the current state and is defined fully in Appendix B.

Data Link Provider Interface (DLPI), Version 2 57

DL_ERROR_ACK DLPI Primitives

NAME
DL_ERROR_ACK (dl_error_ack_t) — informs the DLS user that a previously issued request or
response was invalid. It conveys the identity of the primitive in error, a DLPI error code, and if
appropriate, a UNIX system error code. Whenever this primitive is generated, it indicates that
the DLPI state is identical to what it was before the erroneous request or response.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_error_primitive;
t_uscalar_t dl_errno;
t_uscalar_t dl_unix_errno;

} dl_error_ack_t;

PARAMETERS

dl_primitive
conveys DL_ERROR_ACK.

dl_error_prim
identifies the primitive in error.

dl_errno
conveys the DLPI error code associated with the failure. See the individual request or
response for the error codes that are applicable. In addition to those errors:

DL_BADPRIM
error is returned if an unrecognized primitive is issued by the DLS user.

DL_NOTSUPPORTED
error is returned if an unsupported primitive is issued by the DLS user.

dl_unix_errno
conveys the UNIX system error code associated with the failure. This value should be non-
zero only when dl_errno is set to DL_SYSERR. It is used to report UNIX system failures that
prevent the processing of a given request or response.

STATE
The message is valid in every state where an acknowledgement or confirmation of a previous
request or response is pending.

NEW STATE
The resulting state is that from which the acknowledged request or response was generated.

58 Open Group Technical Specification (2000)

DLPI Primitives Connection-mode Service Primitives

3.2 Connection-mode Service Primitives

3.2.1 Scope

This section describes the service primitives that support the connection-mode service of the
data link layer. These primitives support the connection establishment,connection-mode data
transfer, and connection release services described earlier.

3.2.2 Multi-threaded Connection Establishment

In the connection establishment model, the calling DLS user initiates a request for a connection,
and the called DLS user receives each request and either accepts or rejects it. In the simplest form
(single-threaded), the called DLS user is passed a connect indication and the DLS provider holds
any subsequent indications until a response for the current outstanding indication is received. At
most one connect indication is outstanding at any time.

DLPI also enables a called DLS user to multi-thread connect indications and responses. This
capability is desirable, for example, when imposing a priority scheme on all DLS users
attempting to establish a connection. The DLS provider will pass all connect indications to the
called DLS user (up to some preestablished limit as set by DL_BIND_REQ and DL_BIND_ACK).
The called DLS user may then respond to the requests in any order.

To support multi-threading,a correlation value is needed to associate responses with the
appropriate connect indication. A correlation value is contained in each DL_CONNECT_IND,
and the DLS user must use this value in the DL_CONNECT_RES or DL_DISCONNECT_REQ
primitive used to accept or reject the connect request. The DLS user can also receive a
DL_DISCONNECT_IND with a correlation value when the calling DLS user or the DLS provider
abort a connect request.

Once a connection has been accepted or rejected, the correlation value has no meaning to a DLS
user. The DLS provider may reuse the correlation value in another DL_CONNECT_IND. Thus,
the lifetime of a correlation value is the duration of the connection establishment phase, and as
good programming practice it should not be used for any other purpose by the DLS provider.

The DLS provider assigns the correlation value for each connect indication. Correlation values
must be unique among all outstanding connect indications on a given stream. The values may,
but need not, be unique across all streams to the DLS provider. The correlation value must be a
positive, non-zero value. There is no implied sequencing of connect indications using the
correlation value; the values do not have to increase sequentially for each new connect
indication.

Data Link Provider Interface (DLPI), Version 2 59

Connection-mode Service Primitives DLPI Primitives

3.2.3 List of Connection-mode Service Primitives

The connection-mode service primitives are listed below and are defined in the following man-
pages:

DL_CONNECT_REQ
DL_CONNECT_IND
DL_CONNECT_RES
DL_CONNECT_CON
DL_TOKEN_REQ
DL_TOKEN_ACK
DL_DATA_REQ
DL_DATA_IND
DL_DISCONNECT_REQ
DL_DISCONNECT_IND
DL_RESET_REQ
DL_RESET_IND
DL_RESET_RES
DL_RESET_CON

60 Open Group Technical Specification (2000)

DLPI Primitives DL_CONNECT_REQ

NAME
DL_CONNECT_REQ (dl_connect_req_t) — requests the DLS provider establish a data link
connection with a remote DLS user. The request contains the DLSAP address of the remote
(called) DLS user and quality of service parameters to be negotiated during connection
establishment.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_qos_length;
t_uscalar_t dl_qos_offset;
t_uscalar_t dl_growth;

} dl_connect_req_t;

PARAMETERS
LI dl_primitive
conveys DL_CONNECT_REQ.

dl_dest_addr_length
conveys the length of the DLSAP address that identifies the DLS user with whom a
connection is to be established. If the called user is implemented using DLPI, this address is
the full DLSAP address returned on the DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_qos_length
conveys the length of the quality of service (QOS) parameter values desired by the DLS user
initiating a connection. The desired QOS values are conveyed in the appropriate structure
defined in Section 4.4 on page 120. A full specification of these QOS parameters and rules
for negotiating their values is presented in Chapter 4.

If the DLS user does not wish to specify a particular QOS value, the value
DL_QOS_DONT_CARE may be specified. If the DLS user does not care to specify any QOS
parameter values, this field may be set to zero.

dl_qos_offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

dl_growth
defines a growth field for future enhancements to this primitive. Its value must be set to
zero.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is DL_OUTCON_PENDING.

Data Link Provider Interface (DLPI), Version 2 61

DL_CONNECT_REQ DLPI Primitives

RESPONSE
There is no immediate response to the connect request. However, if the connect request is
accepted by the called DLS user, DL_CONNECT_CON is sent to the calling DLS user, resulting
in state DL_DATAXFER.

If the connect request is rejected by the called DLS user, the called DLS user cannot be reached,
or the DLS provider and/or called DLS user do not agree on the specified quality of service, a
DL_DISCONNECT_IND is sent to the calling DLS user, resulting in state DL_IDLE.

If the request is erroneous, message DL_ERROR_ACK is returned and the resulting state is
unchanged.

ERRORS

DL_ACCESS
The DLS user did not have proper permission to use the requested DLSAP address.

DL_BADADDR
The destination DLSAP address was in an incorrect format or contained invalid
information.

DL_BADQOSPARAM
The quality of service parameters contained invalid values.

DL_BADQOSTYPE
The quality of service structure type was not supported by the DLS provider.

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

62 Open Group Technical Specification (2000)

DLPI Primitives DL_CONNECT_IND

NAME
DL_CONNECT_IND (dl_connect_ind_t) — conveys to the local DLS user that a remote (calling)
DLS user wishes to establish a data link connection. The indication contains the DLSAP address
of the calling and called DLS user, and the quality of service parameters as specified by the
calling DLS user and negotiated by the DLS provider.

The DL_CONNECT_IND also contains a number that allows the DLS user to correlate a
subsequent DL_CONNECT_RES,DL_DISCONNECT_REQ, or DL_DISCONNECT_IND with the
indication (see Section 3.2.2 on page 59).

The number of outstanding DL_CONNECT_IND primitives issued by the DLS provider must
not exceed the value of dl_max_conind as returned on the DL_BIND_ACK. If this limit is reached
and an additional connect request arrives, the DLS provider must not pass the corresponding
connect indication to the DLS user until a response is received for an already outstanding
indication.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_called_addr_length;
t_uscalar_t dl_called_addr_offset;
t_uscalar_t dl_calling_addr_length;
t_uscalar_t dl_calling_addr_offset;
t_uscalar_t dl_qos_length;
t_uscalar_t dl_qos_offset;
t_uscalar_t dl_growth;

} dl_connect_ind_t;

PARAMETERS

dl_primitive
conveys DL_CONNECT_IND.

dl_correlation
conveys the correlation number to be used by the DLS user to associate this message with
the DL_CONNECT_RES,DL_DISCONNECT_REQ, or DL_DISCONNECT_IND that is to
follow. This value, then, enables the DLS user to multi-thread connect indications and
responses. All outstanding connect indications must have a distinct, non-zero correlation
value set by the DLS provider.

dl_called_addr_length
conveys the length of the address of the DLSAP for which this DL_CONNECT_IND
primitive is intended. This address is the full DLSAP address specified by the calling DLS
user and is typically the value returned on the DL_BIND_ACK associated with the given
stream.

dl_called_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the called
DLSAP address begins.

dl_calling_addr_length
conveys the length of the address of the DLSAP from which the DL_CONNECT_REQ
primitive was sent.

Data Link Provider Interface (DLPI), Version 2 63

DL_CONNECT_IND DLPI Primitives

dl_calling_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the calling
DLSAP address begins.

dl_qos_length
conveys the range of quality of service parameter values desired by the calling DLS user
and negotiated by the DLS provider. The range of QOS values is conveyed in the
appropriate structure defined in Section 4.4 on page 120. A full specification of these QOS
parameters and rules for negotiating their values is presented in Chapter 4. For any
parameter the DLS provider does not support or cannot determine, the corresponding
parameter values will be set to DL_UNKNOWN. If the DLS provider does not support any
QOS parameters, this length field will be set to zero.

dl_qos_offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

dl_growth
defines a growth field for future enhancements to this primitive. Its value will be set to zero.

STATE
The message is valid in state DL_IDLE, or state DL_INCON_PENDING when the maximum
number of outstanding DL_CONNECT_IND primitives has not been reached on this stream.

NEW STATE
The resulting state is DL_INCON_PENDING, regardless of the current state.

RESPONSE
The DLS user must eventually send either DL_CONNECT_RES to accept the connect request or
DL_DISCONNECT_REQ to reject the connect request. In either case, the responding message
must convey the correlation number received in the DL_CONNECT_IND. The DLS provider
will use the correlation number to identify the connect request to which the DLS user is
responding.

64 Open Group Technical Specification (2000)

DLPI Primitives DL_CONNECT_RES

NAME
DL_CONNECT_RES (dl_connect_res_t) — directs the DLS provider to accept a connect request
from a remote (calling) DLS user on adesignated stream. The DLS user may accept the
connection on the same stream where the connect indication arrived, or on a different stream
that has been previously bound. The response contains the correlation number from the
corresponding DL_CONNECT_IND, selected quality of service parameters, and an indication of
the stream on which to accept the connection.

After issuing this primitive, the DLS user may immediately begin transferring data using the
DL_DATA_REQ primitive. If the DLS provider receives one or more DL_DATA_REQ primitives
from the local DLS user before it has completed connection establishment, however, it must
queue the data transfer requests internally until the connection is successfully established.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_resp_token;
t_uscalar_t dl_qos_length;
t_uscalar_t dl_qos_offset;
t_uscalar_t dl_growth;

} dl_connect_res_t;

PARAMETERS

dl_primitive
conveys DL_CONNECT_RES.

dl_correlation
conveys the correlation number that was received with the DL_CONNECT_IND associated
with the connection request. The DLS provider will use the correlation number to identify
the connect indication to which the DLS user is responding.

dl_resp_token
if non-zero, conveys the token associated with the responding stream on which the DLS
provider is to establish the connection; this stream must be in the state DL_IDLE. The token
value for a stream can be obtained by issuing a DL_TOKEN_REQ on that stream. If the DLS
user is accepting the connection on the stream where the connect indication arrived, this
value must be zero. See Section 1.3.1.2 on page 4 for a description of the connection
response model.

dl_qos_length
conveys the length of the quality of service parameter values selected by the called DLS
user.

The selected QOS values are conveyed in the appropriate structure as defined in Section 4.4
on page 120. A full specification of these QOS parameters and rules for negotiating their
values is presented in Chapter 4. If the DLS user does not care which value is selected for a
particular QOS parameter, the value DL_QOS_DONT_CARE may be specified. If the DLS
user does not care which values are selected for all QOS parameters, this field may be set to
zero.

dl_qos_offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

Data Link Provider Interface (DLPI), Version 2 65

DL_CONNECT_RES DLPI Primitives

dl_growth
defines a growth field for future enhancements to this primitive. Its value must be set to
zero.

STATE
The primitive is valid in state DL_INCON_PENDING.

NEW STATE
The resulting state is DL_CONN_RES_PENDING.

RESPONSE
If the connect response is successful, DL_OK_ACK is sent to the DLS user. If no outstanding
connect indications remain, the resulting state for the current stream is DL_IDLE; otherwise it
remains DL_INCON_PENDING. For the responding stream (designated by the parameter
dl_resp_token), the resulting state is DL_DATAXFER. If the current stream and responding stream
are the same, the resulting state of that stream is DL_DATAXFER. These streams may only be the
same when the response corresponds to the only outstanding connect indication. If the request
fails, DL_ERROR_ACK is returned on the stream where the DL_CONNECT_RES primitive was
received, and the resulting state of that stream and the responding stream is unchanged.

ERRORS

DL_ACCESS
The DLS user did not have proper permission to use the responding stream.

DL_BADCORR
The correlation number specified in this primitive did not correspond to apending connect
indication.

DL_BADTOKEN
The token for the responding stream was not associated with a currently open stream.

DL_BADQOSPARAM
The quality of service parameters contained invalid values.

DL_BADQOSTYPE
The quality of service structure type was not supported by the DLS provider.

DL_OUTSTATE
The primitive was issued from an invalid state, or the responding stream was not in a valid
state for establishing aconnection.

DL_PENDING
Current stream and responding stream is the same and there is more than one outstanding
connect indication.

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

66 Open Group Technical Specification (2000)

DLPI Primitives DL_CONNECT_CON

NAME
DL_CONNECT_CON (dl_connect_con_t) — informs the local DLS user that the requested data
link connection has been established. The primitive contains the DLSAP address of the
responding DLS user and the quality of service parameters as selected by the responding DLS
user.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_resp_addr_length;
t_uscalar_t dl_resp_addr_offset;
t_uscalar_t dl_qos_length;
t_uscalar_t dl_qos_offset;
t_uscalar_t dl_growth;

} dl_connect_con_t;

PARAMETERS

dl_primitive
conveys DL_CONNECT_CON.

dl_resp_addr_length
conveys the length of the address of the responding DLSAP associated with the newly
established data link connection.

dl_resp_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
responding DLSAP address begins.

dl_qos_length
conveys the length of the quality of service parameter values selected by the responding
DLS user. The selected QOS values are conveyed in the appropriate structure defined in
Section 4.4 on page 120. A full specification of these QOS parameters and rules for
negotiating their values is presented in Chapter 4. For any parameter the DLS provider
does not support or cannot determine, the corresponding parameter value will be set to
DL_UNKNOWN. If the DLS provider does not support any QOS parameters, this length
field will be set to zero.

dl_qos_offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

dl_growth
defines a growth field for future enhancements to this primitive. Its value will be set to zero.

STATE
The message is valid in state DL_OUTCON_PENDING.

NEW STATE
The resulting state is DL_DATAXFER.

Data Link Provider Interface (DLPI), Version 2 67

DL_TOKEN_REQ DLPI Primitives

NAME
DL_TOKEN_REQ (dl_token_req_t) — requests that a connection response token be assigned to
the stream and returned to the DLS user. This token can be supplied in the DL_CONNECT_RES
primitive to indicate the stream on which a connection will be established.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure.

typedef struct {
t_uscalar_t dl_primitive;

} dl_token_req_t;

PARAMETERS

dl_primitive
conveys DL_TOKEN_REQ.

STATE
The message is valid in any state in which a local acknowledgement is not pending, as described
in Appendix B.

RESPONSE
The DLS provider responds to the information request with a DL_TOKEN_ACK.

68 Open Group Technical Specification (2000)

DLPI Primitives DL_TOKEN_ACK

NAME
DL_TOKEN_ACK (dl_token_ack_t) — this message is sent in response to DL_TOKEN_REQ; it
conveys the connection response token assigned to the stream.

SYNOPSIS
The message consists of one M_PCPROTO message block, which contains the following
structure.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_token;

} dl_token_ack_t;

PARAMETERS

dl_primitive
conveys DL_TOKEN_ACK.

dl_token
conveys the connection response token associated with the stream. This value must be a
non-zero value. The DLS provider will generate a token value for each stream upon receipt
of the first DL_TOKEN_REQ primitive issued on that stream. The same token value will be
returned in response to all subsequent DL_TOKEN_REQ primitives issued on a stream.

STATE
The message is valid in any state in response to a DL_TOKEN_REQ.

NEW STATE
The resulting state is unchanged.

Data Link Provider Interface (DLPI), Version 2 69

DL_DATA_REQ DLPI Primitives

NAME
DL_DATA_REQ — conveys a complete DLSDU from the DLS user to the DLS provider for
transmission over the data link connection.

The DLS provider guarantees to deliver each DLSDU to the remote DLS user in the same order
as received from the local DLS user. If the DLS provider detects unrecoverable data loss during
data transfer, this may be indicated to the DLS user by a DL_RESET_IND, or by a
DL_DISCONNECT_IND (if the connection is lost).

SYNOPSIS
The message consists of one or more M_DATA message blocks containing at least one byte of
data.

To simplify support of a read/write interface to the data link layer, the DLS provider must
recognize and process messages that consist of one or more M_DATA message blocks with no
preceding M_PROTO message block. This message type may originate from the write() system
call3.

STATE
The message is valid in state DL_DATAXFER. If it is received in state DL_IDLE or
DL_PROV_RESET_PENDING, it should be discarded without generating an error.

NEW STATE
The resulting state is unchanged.

RESPONSE
If the request is valid, no response is generated. If the request is erroneous, a STREAMS
M_ERROR message should be issued to the DLS user specifying an errno value of EPROTO.
This action should be interpreted as a fatal, unrecoverable, protocol error. A request is
considered erroneous under the following conditions:

• The primitive was issued from an invalid state. If the request is issued in state DL_IDLE or
DL_PROV_RESET_PENDING, however, it is silently discarded with no fatal error generated.

• The amount of data in the current DLSDU is not within the DLS provider’s acceptable
bounds as specified by dl_min_sdu and dl_max_sdu in the DL_INFO_ACK.

NOTE

Support of Direct User-Level Access
A STREAMS module would implement ‘‘more’’ field processing itself to support direct
user-level access. This module could collect messages and send them in one larger message
to the DLS provider, or break large DLSDUs passed to the DLS user into smaller messages.
The module would only be pushed if the DLS user was a user-level process.

3. This does not imply that DLPI will directly support a pure read/write. If such an interface is desired, a STREAMS module could be
implemented to be pushed above the DLS provider.

70 Open Group Technical Specification (2000)

DLPI Primitives DL_DATA_IND

NAME
DL_DATA_IND — conveys a DLSDU from the DLS provider to the DLS user. The DLS provider
guarantees to deliver each DLSDU to the local DLS user in the same order as received from the
remote DLS user. If the DLS provider detects unrecoverable data loss during data transfer, this
may be indicated to the DLS user by a DL_RESET_IND, or by a DL_DISCONNECT_IND (if the
connection is lost).

SYNOPSIS
The message consists of one or more M_DATA blocks containing at least one byte of data.

STATE
The message is valid in state DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

Data Link Provider Interface (DLPI), Version 2 71

DL_DISCONNECT_REQ DLPI Primitives

NAME
DL_DISCONNECT_REQ (dl_disconnect_req_t) — requests the DLS provider to disconnect an
active data link connection or one that was in the process of activation, either outgoing or
incoming, as a result of an earlier DL_CONNECT_IND or DL_CONNECT_REQ. If an incoming
DL_CONNECT_IND is being refused, the correlation number associated with that connect
indication must be supplied. The message indicates the reason for the disconnect.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_reason;
t_uscalar_t dl_correlation;

} dl_disconnect_req_t;

PARAMETERS

dl_primitive
conveys DL_DISCONNECT_REQ.

dl_reason
conveys the reason for the disconnect:

Reason for Disconnect:

DL_DISC_NORMAL_CONDITION
normal release of a data link connection

DL_DISC_ABNORMAL_CONDITION
abnormal release of a data link connection

DL_CONREJ_PERMANENT_COND
a permanent condition caused the rejection of a connect request

DL_CONREJ_TRANSIENT_COND
a transient condition caused the rejection of a connect request

DL_DISC_UNSPECIFIED
reason unspecified.

dl_correlation
if non-zero, conveys the correlation number that was contained in the DL_CONNECT_IND
being rejected (see Section 3.2.2 on page 59). This value permits the DLS provider to
associate the primitive with the proper DL_CONNECT_IND when rejecting an incoming
connection. If the disconnect request is releasing a connection that is already established, or
is aborting a previously sent DL_CONNECT_REQ, the value of dl_correlation should be
zero.

STATE
The message is valid in any of the states DL_DATAXFER, DL_INCON_PENDING,
DL_OUTCON_PENDING, DL_PROV_RESET_PENDING, DL_USER_RESET_PENDING.

NEW STATE
The resulting state is one of the disconnect pending states, as defined in Appendix B.

72 Open Group Technical Specification (2000)

DLPI Primitives DL_DISCONNECT_REQ

RESPONSE
If the disconnect is successful, DL_OK_ACK is sent to the DLS user resulting in state DL_IDLE.

If the request fails, message DL_ERROR_ACK is returned, and the resulting state is unchanged.

ERRORS

DL_BADCORR
The correlation number specified in this primitive did not correspond to apending connect
indication.

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

Data Link Provider Interface (DLPI), Version 2 73

DL_DISCONNECT_IND DLPI Primitives

NAME
DL_DISCONNECT_IND (dl_disconnect_ind_t) — informs the DLS user that the data link
connection on this stream has been disconnected, or that apending connection (either
DL_CONNECT_REQ or DL_CONNECT_IND) has been aborted. The primitive indicates the
origin and the cause of the disconnect.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_originator;
t_uscalar_t dl_reason;
t_uscalar_t dl_correlation;

} dl_disconnect_ind_t;

PARAMETERS

dl_primitive
conveys DL_DISCONNECT_IND.

dl_originator
conveys whether the disconnect was DLS user or DLS provider originated (DL_USER or
DL_PROVIDER, respectively) .

dl_reason
conveys the reason for the disconnect:

Reason for Disconnect

DL_DISC_PERMANENT_CONDITION
connection released due to permanent condition

DL_DISC_TRANSIENT_CONDITION
connection released due to transient condition

DL_CONREJ_DEST_UNKNOWN
unknown destination for connect request

DL_CONREJ_DEST_UNREACH_PERMANENT
could not reach destination for connect request - permanent condition

DL_CONREJ_DEST_UNREACH_TRANSIENT
could not reach destination for connect request - transient condition

DL_CONREJ_QOS_UNAVAIL_PERMANENT
requested quality of service parameters permanently unavailable during connection
establishment

DL_CONREJ_QOS_UNAVAIL_TRANSIENT
requested quality of service parameters temporarily unavailable during connection
establishment

DL_DISC_UNSPECIFIED
reason unspecified

74 Open Group Technical Specification (2000)

DLPI Primitives DL_DISCONNECT_IND

dl_correlation
if non-zero, conveys the correlation number that was contained in the DL_CONNECT_IND
that is being aborted (see Section 3.2.2 on page 59). This value permits the DLS user to
associate the message with the proper DL_CONNECT_IND. If the disconnect indication is
indicating the release of a connection that is already established, or is indicating the
rejection of a previously sent DL_CONNECT_REQ, the value of dl_correlation will be zero.

STATE
The message is valid in any of the states: DL_DATAXFER,DL_INCON_PENDING,
DL_OUTCON_PENDING,DL_PROV_RESET_PENDING,DL_USER_RESET_PENDING.

NEW STATE
The resulting state is DL_IDLE.

Data Link Provider Interface (DLPI), Version 2 75

DL_RESET_REQ DLPI Primitives

NAME
DL_RESET_REQ (dl_reset_req_t) — requests that the DLS provider initiate the resynchronization
of a data link connection. This service is abortive, so no guarantee of delivery can be assumed
about data that is in transit when the reset request is initiated.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;

} dl_reset_req_t;

PARAMETERS

dl_primitive
conveys DL_RESET_REQ.

STATE
The message is valid in state DL_DATAXFER.

NEW STATE
The resulting state is DL_USER_RESET_PENDING.

RESPONSE
There is no immediate response to the reset request. However, as resynchronizationcompletes,
DL_RESET_CON is sent to the initiating DLS user, resulting in state DL_DATAXFER. If the
request fails, message DL_ERROR_ACK is returned and the resulting state is unchanged.

ERRORS

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

76 Open Group Technical Specification (2000)

DLPI Primitives DL_RESET_IND

NAME
DL_RESET_IND (dl_reset_ind_t) — informs the DLS user that either the remote DLS user is
resynchronizing the data link connection, or the DLS provider is reporting loss of data for which
it can not recover. The indication conveys the reason for the reset.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_originator;
t_uscalar_t dl_reason;

} dl_reset_ind_t;

PARAMETERS

dl_primitive
conveys DL_RESET_IND.

dl_originator
conveys whether the reset was originated by the DLS user or DLS provider (DL_USER or
DL_PROVIDER, respectively) .

dl_reason
conveys the reason for the reset.

Reason for Reset

DL_RESET_FLOW_CONTROL
indicates flow control congestion

DL_RESET_LINK_ERROR
indicates a data link error situation

DL_RESET_RESYNCH
indicates a request for resynchronization of a data link connection.

STATE
The message is valid in state DL_DATAXFER.

NEW STATE
The resulting state is DL_PROV_RESET_PENDING.

RESPONSE
The DLS user should issue a DL_RESET_RES primitive to continue the resynchronization
procedure.

Data Link Provider Interface (DLPI), Version 2 77

DL_RESET_RES DLPI Primitives

NAME
DL_RESET_RES (dl_reset_res_t) — directs the DLS provider to complete resynchronizing the
data link connection.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;

} dl_reset_res_t;

PARAMETERS

dl_primitive
conveys DL_RESET_RES.

STATE
The primitive is valid in state DL_PROV_RESET_PENDING.

NEW STATE
The resulting state is DL_RESET_RES_PENDING.

RESPONSE
If the reset response is successful, DL_OK_ACK is sent to the DLS user resulting in state
DL_DATAXFER. If the reset response is erroneous, DL_ERROR_ACK is returned and the
resulting state is unchanged.

ERRORS

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR
A system error has occurred and the UNIX system error is indicated in the
DL_ERROR_ACK.

78 Open Group Technical Specification (2000)

DLPI Primitives DL_RESET_CON

NAME
DL_RESET_CON (dl_reset_con_t) — informs the reset-initiating DLS user that the reset has
completed.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;

} dl_reset_con_t;

PARAMETERS

dl_primitive
conveys DL_RESET_CON.

STATE
The message is valid in state DL_USER_RESET_PENDING.

NEW STATE
The resulting state is DL_DATAXFER.

Data Link Provider Interface (DLPI), Version 2 79

Connectionless-mode Service Primitives DLPI Primitives

3.3 Connectionless-mode Service Primitives

3.3.1 Scope

This section describes the primitives that support the connectionless-mode service of the data
link layer. These primitives support the connectionless data transfer service described earlier.

3.3.2 List of Connectionless-mode Service Primitives

The connectionless-mode service primitives are listed below and are defined in the following
man-pages:

DL_UNITDATA_REQ
DL_UNITDATA_IND
DL_UDERROR_IND
DL_UDQOS_REQ

80 Open Group Technical Specification (2000)

DLPI Primitives DL_UNITDATA_REQ

NAME
DL_UNITDATA_REQ (dl_unitdata_req_t) — conveys one DLSDU from the DLS user to the DLS
provider for transmission to a peer DLS user. Because connectionless data transfer is an
unacknowledged service, the DLS provider makes no guarantees of delivery of connectionless
DLSDUs. It is the responsibility of the DLS user to do any necessary sequencing or
retransmission of DLSDUs in the event of a presumed loss.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below,
followed by one or more M_DATA blocks containing at least one byte of data. The amount of
user data that may be transferred in a single DLSDU is limited. This limit is conveyed by the
parameter dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
dl_priority_t dl_priority;

} dl_unitdata_req_t;

PARAMETERS

dl_primitive
conveys DL_UNITDATA_REQ.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS user. If the destination user
is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_priority
indicates the priority value within the supported range for this particular DLSDU.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

RESPONSE
If the DLS provider accepts the data for transmission, there is no response. This does not,
however, guarantee that the data will be delivered to the destination DLS user, since the
connectionless data transfer is not a confirmed service. If the request is erroneous, message
DL_UDERROR_IND is returned, and the resulting state is unchanged.

If for some reason the request cannot be processed, the DLS provider may generate a
DL_UDERROR_IND to report the problem. There is, however, no guarantee that such an error
report will be generated for all undeliverable data units, since connectionless data transfer is not
a confirmed service.

ERRORS

DL_BADADDR
The destination DLSAP address was in an incorrect format or contained invalid
information.

Data Link Provider Interface (DLPI), Version 2 81

DL_UNITDATA_REQ DLPI Primitives

DL_BADDATA
The amount of data in the current DLSDU exceeded the DLS provider’s DLSDU limit.

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_UNSUPPORTED
Requested priority not supplied by provider.

82 Open Group Technical Specification (2000)

DLPI Primitives DL_UNITDATA_IND

NAME
DL_UNITDATA_IND (dl_unitdata_ind_t) — conveys one DLSDU from the DLS provider to the
DLS user.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below,
followed by one or more M_DATA blocks containing at least one byte of data. The amount of
user data that may be transferred in a single DLSDU is limited. This limit is conveyed by the
parameter dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;
t_uscalar_t dl_group_address;

} dl_unitdata_ind_t;

PARAMETERS

dl_primitive
conveys DL_UNITDATA_IND.

dl_dest_addr_length
conveys the length of the address of the DLSAP where this DL_UNITDATA_IND is
intended to be delivered.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the DLSAP address of the sending DLS user.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

dl_group_address
is set by the DLS Provider upon receiving and passing upstream a data message when the
destination address of the data message is a multicast or broadcast address.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

Data Link Provider Interface (DLPI), Version 2 83

DL_UDERROR_IND DLPI Primitives

NAME
DL_UDERROR_IND (dl_uderror_ind_t) — informs the DLS user that a previously sent
DL_UNITDATA_REQ produced an error or could not be delivered. The primitive indicates the
destination DLSAP address associated with the failed request, and conveys an error value that
specifies the reason for failure.

SYNOPSIS
The message consists of either one M_PROTO message block or one M_PCPROTO message
block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_unix_errno;
t_uscalar_t dl_errno;

} dl_uderror_ind_t;

PARAMETERS

dl_primitive
conveys DL_UDERROR_IND.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS user.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_unix_errno
conveys the UNIX system error code associated with the failure. This value should be non-
zero only when dl_errno is set to DL_SYSERR. It is used to report UNIX system failures that
prevent the processing of a given request.

dl_errno
conveys the DLPI error code associated with the failure. See ERRORS in the description of
DL_UNITDATA_REQ for the error codes that apply to an erroneous DL_UNITDATA_REQ.
In addition, the error value DL_UNDELIVERABLE may be returned if the request was valid
but for some reason the DLS provider could not deliver the data unit (for example, due to
lack of sufficient local buffering to store the data unit). There is, however, no guarantee that
such an error report will be generated for all undeliverable data units, since connectionless
data transfer is not a confirmed service.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

84 Open Group Technical Specification (2000)

DLPI Primitives DL_UDQOS_REQ

NAME
DL_UDQOS_REQ (dl_udqos_req_t) — requests the DLS provider to apply the specified quality of
service parameter values to subsequent data unit transmissions. These new values will remain
in effect until another DL_UDQOS_REQ is issued.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_qos_length;
t_uscalar_t dl_qos_offset;

} dl_udqos_req_t;

PARAMETERS

dl_primitive
conveys DL_UDQOS_REQ.

dl_qos_length
conveys the length, in bytes, of the requested quality of service parameter values. The
values are conveyed in the appropriate structure defined in Section 4.4 on page 120. The
available range of QOS values that may be selected is specified by the dl_qos_range_length
and dl_qos_range_offset parameters in the DL_INFO_ACK primitive. For any parameter
whose value the DLS user does not wish to select, the value DL_QOS_DONT_CARE may
be set and the DLS provider will maintain the current value for that parameter. See Chapter
4. for a full description of the quality of service parameters.

dl_qos_offset
conveys the offset from the beginning of the M_PROTO message block where the quality of
service parameters begin.

STATE
The message is valid in state DL_IDLE.

NEW STATE
The resulting state is DL_UDQOS_PENDING.

RESPONSE
If the quality of service request is successful, DL_OK_ACK is sent to the DLS user and the
resulting state is DL_IDLE. If the request fails, message DL_ERROR_ACK is returned and the
resulting state is unchanged.

ERRORS

DL_BADQOSPARAM
The quality of service parameters contained values outside the range of those supported by
the DLS provider.

DL_BADQOSTYPE
The quality of service structure type was not supported by the DLS provider.

DL_OUTSTATE
The primitive was issued from an invalid state.

Data Link Provider Interface (DLPI), Version 2 85

Primitives to handle XID and TEST operations DLPI Primitives

3.4 Primitives to handle XID and TEST operations

3.4.1 Scope

This section describes the service primitives that support the XID and TEST operations. The DLS
User can issue these primitives to the DLS Provider requesting the provider to send an XID or a
TEST frame. On receipt of an XID or TEST frame from the remote side, the DLS Provider can
send the appropriate indication to the User.

3.4.2 List of Primitives Handling XID and TEST operations

The primitives which handle XID and TEST operations are listed below and are defined in the
following man-pages:

DL_TEST_REQ
DL_TEST_IND
DL_TEST_RES
DL_TEST_CON
DL_XID_REQ
DL_XID_IND
DL_XID_RES
DL_XID_CON

86 Open Group Technical Specification (2000)

DLPI Primitives DL_TEST_REQ

NAME
DL_TEST_REQ (dl_test_req_t) — conveys one TEST command DLSDU from the DLS User to the
DLS Provider for transmission to a peer DLS Provider.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;

} dl_test_req_t;

PARAMETERS

dl_primitive
conveys DL_TEST_REQ

dl_flag
indicates flag values for the request as follows:

DL_POLL_FINAL
indicates if the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

STATE
The message is valid in states DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

RESPONSE
On an invalid TEST command request, a DL_ERROR_ACK is issued to the user. If the DLS
Provider receives a response from the remote side, a DL_TEST_CON is issued to the DLS User. It
is recommended that the DLS User use a timeout procedure to recover from a situation when
there is no response from the peer DLS User.

ERRORS

DL_BADADDR
The DLSAP address information was invalid or was in an incorrect format.

DL_BADDATA
The amount of data exceeded the DLS provider’s limit for TEST messages.

DL_SYSERR
A System error has occurred and the UNIX System error is indicated in the
DL_ERROR_ACK.

Data Link Provider Interface (DLPI), Version 2 87

DL_TEST_REQ DLPI Primitives

DL_NOTSUPPORTED
Primitive is known but not supported by the DLS Provider

DL_OUTSTATE
The primitive was issued from an invalid state

DL_TESTAUTO
Previous bind request specified automatic handling of TEST responses.

DL_UNSUPPORTED
Requested service not supplied by provider.

88 Open Group Technical Specification (2000)

DLPI Primitives DL_TEST_IND

NAME
DL_TEST_IND (dl_test_ind_t) — conveys the TEST response/indication DLSDU from the DLS
Provider to the DLS User.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;

} dl_test_ind_t;

PARAMETERS

dl_primitive
conveys DL_TEST_IND

dl_flag
indicates the flag values associated with the received TEST frame:

DL_POLL_FINAL
indicates if the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using
DLPI, this address if the full DLSAP address returned on the DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

STATE
The message is valid in states DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

Data Link Provider Interface (DLPI), Version 2 89

DL_TEST_RES DLPI Primitives

NAME
DL_TEST_RES (dl_test_res_t) — conveys the TEST response DLSDU from the DLS User to the
DLS Provider in response to a DL_TEST_IND.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;

} dl_test_res_t;

PARAMETERS

dl_primitive
conveys DL_TEST_RES

dl_flag
indicates the flag values for the response as follows:

DL_POLL_FINAL
indicates if the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

STATE
The message is valid in states DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

RESPONSE
On an invalid TEST response request, a DL_ERROR_ACK is issued to the usr.

ERRORS

DL_BADADDR
The DLSAP address information was invalid or was in an incorrect format.

DL_BADDATA
The amount of data exceeded the DLS provider’s limit for TEST messages.

DL_SYSERR
A System error has occurred and the UNIX System error is indicated in the DL_ERR
OR_ACK.

DL_NOTSUPPORTED
Primitive is known but not supported by the DLS Provider

DL_OUTSTATE
The primitive was issued from an invalid state

90 Open Group Technical Specification (2000)

DLPI Primitives DL_TEST_RES

DL_TESTAUTO
Previous bind request specified automatic handling of TEST responses.

DL_UNSUPPORTED
Requested service not supplied by provider.

Data Link Provider Interface (DLPI), Version 2 91

DL_TEST_CON DLPI Primitives

NAME
DL_TEST_CON (dl_test_con_t) — conveys the TEST response DLSDU from the DLS Provider to
the DLS User in response to a DL_TEST_REQ.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;

} dl_test_con_t;

PARAMETERS

dl_primitive
conveys DL_TEST_RES

dl_flag
indicates the flag values for the request as follows:

DL_POLL_FINAL
indicates if the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using
DLPI, this address is the full DLSAP address returned on the DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

STATE
The message is valid in states DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

92 Open Group Technical Specification (2000)

DLPI Primitives DL_XID_REQ

NAME
DL_XID_REQ (dl_xid_req_t) — conveys one XID DLSDU from the DLS User to the DLS Provider
for transmission to a peer DLS User.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;

} dl_xid_req_t;

PARAMETERS

dl_primitive
conveys DL_XID_REQ

dl_flag
indicates the flag values for the response as follows:

DL_POLL_FINAL
indicates status of the poll/final bit in the xid frame.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

STATE
The message is valid in state DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

RESPONSE
On an invalid XID request, a DL_ERROR_ACK is issued to the user. If the remote side responds
to the XID request, a DL_XID_CON will be sent to the User. It is recommended that the DLS
User use a timeout procedure on an XID_REQ. The timeout may be used if the remote side does
not respond to the XID request.

ERRORS

DL_BADADDR
The DLSAP address information was invalid or was in an incorrect format.

DL_BADDATA
The amount of data in the current DLSDU exceeded the DLS Provider’s DLSDU limit.

DL_NOTSUPPORTED
Primitive is known but not supported by the DLS Provider

DL_OUTSTATE
The primitive was issued from an invalid state

Data Link Provider Interface (DLPI), Version 2 93

DL_XID_REQ DLPI Primitives

DL_SYSERR
A System error has occurred and the UNIX System error is indicated in the
DL_ERROR_ACK.

DL_XIDAUTO
Previous bind request specified Provider would handle XID.

94 Open Group Technical Specification (2000)

DLPI Primitives DL_XID_IND

NAME
DL_XID_IND (dl_xid_ind_t) — conveys an XID DLSDU from the DLS Provider to the DLS User.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;

} dl_xid_ind_t;

PARAMETERS

dl_primitive
conveys DL_XID_IND

dl_flag
conveys the flag values associated with the received XID frame.

DL_POLL_FINAL
indicates if the received xid frame had the poll/final bit set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using
DLPI, this address if the full DLSAP address returned on the DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

STATE
The message is valid in state DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

RESPONSE
The DLS User must respond with a DL_XID_RES.

Data Link Provider Interface (DLPI), Version 2 95

DL_XID_RES DLPI Primitives

NAME
DL_XID_RES (dl_xid_res_t) — conveys an XID DLSDU from the DLS User to the DLS Provider in
response to a DL_XID_IND.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;

} dl_xid_res_t;

PARAMETERS

dl_primitive
conveys DL_XID_RES

dl_flag
conveys the flag values associated with the received XID frame.

DL_POLL_FINAL
indicates if the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

STATE
The message is valid in states DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

RESPONSE
On a invalid XID response request, a DL_ERROR_ACK is issued to the usr.

ERRORS

DL_BADADDR
The DLSAP address information was invalid or was in an incorrect format.

DL_BADDATA
The amount of data in the current DLSDU exceeded the DLS Provider’s DLSDU limit.

DL_NOTSUPPORTED
Primitive is known but not supported by the DLS Provider

DL_OUTSTATE
The primitive was issued from an invalid state

DL_SYSERR
A System error has occurred and the UNIX System error is indicated in the DL_ERR
OR_ACK.

96 Open Group Technical Specification (2000)

DLPI Primitives DL_XID_RES

DL_XIDAUTO
Previous bind request specified Provider would handle XID.

Data Link Provider Interface (DLPI), Version 2 97

DL_XID_CON DLPI Primitives

NAME
DL_XID_CON (dl_xid_con_t) — conveys an XID DLSDU from the DLS Provider to the DLS User
in response to a DL_XID_REQ.

SYNOPSIS
The message consists of one M_PROTO message block, followed by zero or more M_DATA
blocks containing zero or more bytes of data. The message structure is as follows:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_flag;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;

} dl_xid_con_t;

PARAMETERS

dl_primitive
conveys DL_XID_CON

dl_flag
conveys the flag values associated with the received XID frame.

DL_POLL_FINAL
indicates if the poll/final bit is set.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the source DLSAP address. If the source user is implemented using
DLPI, this address is the full DLSAP address returned on the DL_BIND_ACK.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

STATE
The message is valid in states DL_IDLE and DL_DATAXFER.

NEW STATE
The resulting state is unchanged.

98 Open Group Technical Specification (2000)

DLPI Primitives Acknowledged Connectionless-mode Service Primitives

3.5 Acknowledged Connectionless-mode Service Primitives

3.5.1 Scope

This section describes the primitives that support the acknowledged connectionless-mode
service of the data link layer. These primitives support the acknowledged connectionless data
transfer service described earlier.

3.5.2 List of Acknowledged Connectionless-mode Service Primitives

The acknowledged connectionless-mode service primitives are listed below and are defined in
the following man-pages:

DL_DATA_ACK_REQ
DL_DATA_ACK_IND
DL_DATA_ACK_STATUS_IND
DL_REPLY_REQ
DL_REPLY_IND
DL_REPLY_STATUS_IND
DL_REPLY_UPDATE_REQ
DL_REPLY_UPDATE_STATUS_IND

Data Link Provider Interface (DLPI), Version 2 99

DL_DATA_ACK_REQ DLPI Primitives

NAME
DL_DATA_ACK_REQ (dl_data_ack_req_t) — this request is passed to the Data Link Provider to
request that a DLSDU be sent to a peer DLS User using acknowledged connectionless mode data
unit transmission procedures.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below, followed by
one or more M_DATA blocks containing one or more bytes of data. The amount of user data that
may be transferred in a single DLSDU is limited. This limit is conveyed by the parameter
dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;
t_uscalar_t dl_priority;
t_uscalar_t dl_service_class;

} dl_data_ack_req_t;

PARAMETERS

dl_primitive
conveys DL_DATA_ACK_REQ

dl_correlation
conveys a unique identifier which will be returned in the DL_DATA_ACK_STATUS_IND
primitive to allow the DLS User to correlate the status to the appropriate
DL_DATA_ACK_REQ primitive.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the DLSAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

dl_priority
indicates the priority value within the supported range for this particular DLSDU.

dl_service_class
specifies whether or not an acknowledge capability in the medium access control sublayer is
to be used for the data unit transmission.

DL_RQST_RSP
request acknowledgement service from the medium access control sublayer if
supported

100 Open Group Technical Specification (2000)

DLPI Primitives DL_DATA_ACK_REQ

DL_RQST_NORSP
no acknowledgement service requested from the medium access control sublayer.

STATE
This message is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

RESPONSE
If the request is erroneous, message DL_ERROR_ACK is returned, and the resulting state is
unchanged. If the DLS Provider accepts the data for transmission,a
DL_DATA_ACK_STATUS_IND is returned. This indication will indicate the success or failure of
the data transmission. Although the exchange service is connectionless, in-sequence delivery is
guaranteed for data sent by the initiating station.

ERRORS

DL_BADADDR
The destination DLSAP address was in an incorrect format or contained invalid
information.

DL_BADDATA
The amount of data in the current DLSDU exceeded the DLS provider’s DLSDU limit.

DL_NOTSUPPORTED
Primitive is valid, but not supported.

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_UNSUPPORTED
Requested service or priority not supported by Provider (Request with response at the
Medium Access Control sublayer).

Data Link Provider Interface (DLPI), Version 2 101

DL_DATA_ACK_IND DLPI Primitives

NAME
DL_DATA_ACK_IND (dl_data_ack_ind_t) — conveys one DLSDU from the DLS Provider to the
DLS User. This primitive indicates the arrival of a non-null, non-duplicate DLSDU from a peer
Data Link User entity.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below, followed by
one or more M_DATA blocks containing one or more bytes of data. The amount of user data that
may be transferred in a single DLSDU is limited. This limit is conveyed by the parameter
dl_max_sdu in the DL_INFO_ACK primitive.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;
t_uscalar_t dl_priority;
t_uscalar_t dl_service_class;

} dl_data_ack_ind_t;

PARAMETERS

dl_primitive
conveys DL_DATA_ACK_IND

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the DLSAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins. address returned on the DL_BIND_ACK.

dl_priority
priority provided for the data unit transmission.

dl_service_class
specifies whether or not an acknowledge capability in the medium access control sublayer is
to be used for the data unit transmission.

DL_RQST_RSP
use acknowledgement service in the medium access control sublayer.

DL_RQST_NORSP
no acknowledgement service to be used in the medium access control sublayer.

102 Open Group Technical Specification (2000)

DLPI Primitives DL_DATA_ACK_IND

STATE
This message is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

Data Link Provider Interface (DLPI), Version 2 103

DL_DATA_ACK_STATUS_IND DLPI Primitives

NAME
DL_DATA_ACK_STATUS_IND (dl_data_ack_status_ind_t) — conveys the results of the previous
associated DL_DATA_ACK_REQ from the DLS Provider to the DLS User.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_status;

} dl_data_ack_status_ind_t;

PARAMETERS

dl_primitive
conveys DL_DATA_ACK_STATUS_IND

dl_correlation
conveys the unique identifier passed with the DL_DATA_ACK_REQ primitive, to allow the
DLS User correlate the status to the appropriate DL_DATA_ACK_REQ.

dl_status
indicates the success or failure of the previous associated acknowledged connectionless-
mode data unit transmission request.

DL_CMD_OK
command accepted.

DL_CMD_RS
unimplemented or inactivated service.

DL_CMD_UE
LLC User Interface error

DL_CMD_PE
protocol error

DL_CMD_IP
permanent implementation dependent error

DL_CMD_UN
resources temporarily unavailable.

DL_CMD_IT
temporary implementation dependent error.

STATE
This message is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

104 Open Group Technical Specification (2000)

DLPI Primitives DL_REPLY_REQ

NAME
DL_REPLY_REQ (dl_reply_req_t) — this request primitive is passed to the DLS Provider by the
DLS User to request that a DLSDU be returned from a peer DLS Provider or that DLSDUs be
exchanged between stations using acknowledged connectionless mode data unit exchange
procedures.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below, followed by
one or more M_DATA blocks with one or more bytes of data.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;
t_uscalar_t dl_priority;
t_uscalar_t dl_service_class;

} dl_reply_req_t;

PARAMETERS

dl_primitive
conveys DL_REPLY_REQ

dl_correlation
conveys a unique identifier which will be returned in the DL_REPLY_STATUS_IND
primitive to allow the DLS User to correlate the status to the appropriate DL_REPLY_REQ
primitive.

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the DLSAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

dl_priority
priority provided for the data unit transmission.

dl_service_class
specifies whether or not an acknowledge capability in the medium access control sublayer is
to be used for the data unit transmission.

STATE
This primitive is valid in state DL_IDLE.

Data Link Provider Interface (DLPI), Version 2 105

DL_REPLY_REQ DLPI Primitives

NEW STATE
The resulting state is unchanged.

RESPONSE
If the request is erroneous, message DL_ERROR_ACK is returned, and the resulting state is
unchanged. If the message is valid, a DL_REPLY_STATUS_IND is returned. This will indicate
the success or failure of the previous associated acknowledged connectionless-mode data unit
exchange.

ERRORS

DL_BADADDR
The destination DLSAP address was in an incorrect format or contained invalid
information.

DL_BADDATA
The amount of data in the current DLSDU exceeded the DLS provider’s DLSDU limit.

DL_NOTSUPPORTED
Primitive is valid, but not supported.

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_UNSUPPORTED
Requested service not supported by Provider (Request with response at the Medium Access
Control sublayer).

106 Open Group Technical Specification (2000)

DLPI Primitives DL_REPLY_IND

NAME
DL_REPLY_IND (dl_reply_ind_t) — this primitive is the service indication primitive for the
acknowledged connectionless-mode data unit exchange service. It is passed from the DLS
Provider to the DLS User to indicate either asuccessful request of a DLSDU from the peer data
link user entity, or exchange of DLSDUs with a peer data link user entity.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below, followed by
zero or more M_DATA blocks.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_dest_addr_length;
t_uscalar_t dl_dest_addr_offset;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;
t_uscalar_t dl_priority;
t_uscalar_t dl_service_class;

} dl_reply_ind_t;

PARAMETERS

dl_primitive
conveys DL_REPLY_IND

dl_dest_addr_length
conveys the length of the DLSAP address of the destination DLS User. If the destination
user is implemented using DLPI, this address is the full DLSAP address returned on the
DL_BIND_ACK.

dl_dest_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the
destination DLSAP address begins.

dl_src_addr_length
conveys the length of the DLSAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

dl_priority
priority provided for the data unit transmission.

dl_service_class
specifies whether or not an acknowledge capability in the medium access control sublayer is
to be used for the data unit transmission.

STATE
This primitive is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

Data Link Provider Interface (DLPI), Version 2 107

DL_REPLY_STATUS_IND DLPI Primitives

NAME
DL_REPLY_STATUS_IND (dl_reply_status_ind_t) — this indication primitive is passed from the
DLS Provider to the DLS User to indicate the success or failure of the previous associated
acknowledged connectionless mode data unit exchange request.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below, followed by
zero or more M_DATA blocks.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_status;

} dl_reply_status_ind_t;

PARAMETERS

dl_primitive
conveys DL_REPLY_STATUS_IND

dl_correlation
conveys the unique identifier passed with the DL_REPLY_REQ primitive, to allow the DLS
User correlate the status to the appropriate DL_REPLY_REQ.

dl_status
Indicates the success or failure of the previous associated acknowledged connectionless-
mode data unit exchange request.

DL_CMD_OK
command accepted.

DL_CMD_RS
unimplemented or inactivated service.

DL_CMD_UE
LLC User Interface error

DL_CMD_PE
protocol error

DL_CMD_IP
permanentimplementation dependent error

DL_CMD_UN
resources temporarily available.

DL_CMD_IT
temporary implementation dependent error.

DL_RSP_OK
response DLSDU present.

DL_RSP_RS
unimplemented or inactivated service.

DL_RSP_NE
response DLSDU never submitted.

DL_RSP_NR
response DLSDU not requested.

108 Open Group Technical Specification (2000)

DLPI Primitives DL_REPLY_STATUS_IND

DL_RSP_UE
LLC User interface error.

DL_RSP_IP
permanent implementation dependent error.

DL_RSP_UN
resources temporarily unavailable.

DL_RSP_IT
temporary implementation dependent error.

STATE
This primitive is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

Data Link Provider Interface (DLPI), Version 2 109

DL_REPLY_UPDATE_REQ DLPI Primitives

NAME
DL_REPLY_UPDATE_REQ (dl_reply_update_req_t) — conveys a DLSDU to the DLS Provider
from the DLS User to be held by the DLS Provider and sent out at a later time when requested to
do so by the peer DLS Provider.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below, followed by
one or more M_DATA blocks.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_src_addr_length;
t_uscalar_t dl_src_addr_offset;

} dl_reply_update_req_t;

PARAMETERS

dl_primitive
conveys DL_REPLY_UPDATE_REQ

dl_correlation
conveys context specific information to be returned in the
DL_REPLY_UPDATE_STATUS_IND primitive to allow the DLS User correlate the status to
the appropriate previous request.

dl_src_addr_length
conveys the length of the DLSAP address of the source DLS User.

dl_src_addr_offset
conveys the offset from the beginning of the M_PROTO message block where the source
DLSAP address begins.

STATE
This primitive is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

RESPONSE
If the request is erroneous, a DL_ERROR_ACK is returned with the appropriate error code.
Otherwise, a DL_REPLY_UPDATE_STATUS_IND is returned, which indicates the success or
failure of the DL_REPLY_UPDATE_REQ.

ERRORS

DL_BADDATA
The amount of data in the DLSDU exceeded the DLS Provider’s DLSDU limit.

DL_NOTSUPPORTED
Primitive is known, but not supported.

DL_OUTSTATE
The primitive was issued from an invalid state.

110 Open Group Technical Specification (2000)

DLPI Primitives DL_REPLY_UPDATE_STATUS_IND

NAME
DL_REPLY_UPDATE_STATUS_IND (dl_reply_update_status_ind_t) — this primitive is the service
confirmation primitive for the reply data unit preparation service. This primitive is sent to the
DL User from the DLS Provider to indicate the success or failure of the previous associated data
unit preparation request.

SYNOPSIS
Consists of one M_PROTO message block containing the structure shown below.

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_correlation;
t_uscalar_t dl_status;

} dl_reply_update_req_t;

PARAMETERS

dl_primitive
conveys DL_UPDATE_STATUS_IND

dl_correlation
Indicates the context information passed with the DL_REPLY_UPDATE_REQ to allow the
DLS User correlate the status with the appropriate previous request.

dl_status
indicates the success or failure of the previous associated data unit preparation request.

DL_CMD_OK
command accepted.

DL_CMD_RS
unimplemented or inactivated service.

DL_CMD_UE
LLC User Interface error

DL_CMD_PE
protocol error

DL_CMD_IP
permanentimplementation dependent error

DL_CMD_UN
resources temporarily available.

DL_CMD_IT
temporary implementation dependent error.

DL_RSP_OK
response DLSDU present.

DL_RSP_RS
unimplemented or inactivated service.

DL_RSP_NE
response DLSDU never submitted.

DL_RSP_NR
response DLSDU not requested.

Data Link Provider Interface (DLPI), Version 2 111

DL_REPLY_UPDATE_STATUS_IND DLPI Primitives

DL_RSP_UE
LLC User interface error.

DL_RSP_IP
permanent implementation dependent error.

DL_RSP_UN
resources temporarily unavailable.

DL_RSP_IT
temporaryimplementation dependent error.

STATE
This primitive is valid in state DL_IDLE.

NEW STATE
The resulting state is unchanged.

112 Open Group Technical Specification (2000)

Chapter 4

Quality of Data Link Service

4.1 Characteristics
The quality of data link service is defined by the term "Quality of Service" (QOS), and describes
certain characteristics of transmission between two DLS users. These characteristics are
attributable solely to the DLS provider, but are observable by the DLS users. The visibility of
QOS characteristics enables a DLS user to determine, and possibly negotiate, the characteristics
of transmission needed to communicate with the remote DLS user.

4.2 Overview of Quality of Service
Quality of service characteristics apply to both the connection and connectionless modes of
service. The semantics for each mode are discussed below.

4.2.1 Connection-mode Service

‘‘Quality of Service’’ (QOS) refers to certain characteristics of a data link connection as observed
between the connection endpoints. QOS describes the specific aspects of a data link connection
that are attributable to the DLS provider.

QOS is defined in terms of QOS parameters. The parameters give DLS users a means of
specifying their needs. These parameters are divided into two groups, based on how their values
are determined:

• QOS parameters that are negotiated on a per-connection basis during connection
establishment

• QOS parameters that are not negotiated during connection establishment. The values are
determined or known through other methods, usually administrative.

The QOS parameters that can be negotiated during connection establishment are:

• throughput

• transit delay

• priority

• protection.

The QOS parameters for throughput and transit delay are negotiated end-to-end between the
two DLS users and the DLS provider. The QOS parameters for priority and protection are
negotiated locally by each DLS user with the DLS provider. The QOS parameters that cannot be
negotiated are residual error rate and resilience. Section 4.5 on page 123 describes the rules for
QOS negotiation.

Data Link Provider Interface (DLPI), Version 2 113

Overview of Quality of Service Quality of Data Link Service

Once the connection is established, the agreed QOS values are not renegotiated at any point.
There is no guarantee by any DLS provider that the original QOS values will be maintained, and
the DLS users are not informed if QOS changes. The DLS provider also need only record those
QOS values selected at connection establishment for return in response to the DL_INFO_REQ
primitive. Quality of Data Link Service for Connectionless-mode and Acknowledged
Connectionless-mode Service.

4.2.2 QOS for Connectionless/Acknowledged Connectionless

The QOS for connectionless-mode and acknowledged connectionless-mode service refers to
characteristics of the data link layer between two DLSAPs, attributable to the DLS provider. The
QOS applied to each DL_UNITDATA_REQ/DL_DATA_ACK_REQ primitive may be
independent of the QOS applied to preceding and following
DL_UNITDATA_REQ/DL_DATA_ACK_REQ primitives. QOS cannot be negotiated between
two DLS users as in the connection-mode service.

Every DL_UNITDATA_REQ/DL_DATA_ACK_REQ primitive may have certain QOS values
associated with it. The supported range of QOS parameter values is made known to the DLS
user in response to the DL_INFO_REQ primitive. The DLS user may select specific QOS
parameter values to be associated with subsequent data unit transmissions using the
DL_UDQOS_REQ primitive. This selection is a strictly local management function. If different
QOS values are to be associated with each transmission, DL_UDQOS_REQ may be issued to
alter those values before each DL_UNITDATA_REQ or DL_DATA_ACK_REQ is issued.

114 Open Group Technical Specification (2000)

Quality of Data Link Service QOS Parameter Definitions

4.3 QOS Parameter Definitions
This section describes the quality of service parameters supported by DLPI for both connection-
mode and connectionless-mode services. The following table summarizes the supported
parameters. It indicates to which service mode (connection, connectionless, or both) the
parameter applies. For those parameters supported by the connection-mode service, the table
also indicates whether the parameter value is negotiated during connection establishment. If so,
the table further indicates whether the QOS values are negotiated end-to-end among both DLS
users and the DLS provider, or locally for each DLS user independently with the DLS provider.

Parameter Service Mode Negotiation__
throughput connection end-to-end___
transit delay both end-to-end___
priority both local___
protection both local___
residual error rate both none___
resilience connection none___L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

Table 4-1 QOS Supported Parameters

4.3.1 Throughput

Throughput is a connection-mode QOS parameter that has end-to-end significance. It is defined
as the total number of DLSDU bits successfully transferred by a
DL_DATA_REQ/DL_DATA_IND primitive sequence divided by the input/output time, in
seconds, for that sequence. Successful transfer of a DLSDU is defined to occur when the DLSDU
is delivered to the intended user without error, in proper sequence, and before connection
termination by the receiving DLS user.

The input/output time for a DL_DATA_REQ/DL_DATA_IND primitive sequence is the greater
of both:

• the time between the first and last DL_DATA_REQ in a sequence

• the time between the first and last DL_DATA_IND in the sequence.

Throughput is only meaningful for a sequence of complete DLSDUs.

Throughput is specified and negotiated for the transmit and receive directions independently at
connection establishment. The throughput specification defines the target and minimum
acceptable values for a connection. Each specification is an average rate.

The DLS user can delay the receipt or sending of DLSDUs. The delay caused by a DLS user is not
included in calculating the average throughput values.

Parameter Format

typedef struct {
t_scalar_t dl_target_value;
t_scalar_t dl_accept_value;

} dl_through_t;

This typedef is used to negotiate the transmit and receive throughput values.

Data Link Provider Interface (DLPI), Version 2 115

QOS Parameter Definitions Quality of Data Link Service

Parameter Definitions

dl_target_value
specifies the desired throughput value for the connection in bits/second.

dl_accept_value
specifies the minimum acceptable throughput value for the connection in bits/second.

4.3.2 Transit Delay

Connection and connectionless modes can specify a transit delay, which indicates the elapsed
time between a DL_DATA_REQ or DL_UNITDATA_REQ primitive and the corresponding
DL_DATA_IND or DL_UNITDATA_IND primitive. The elapsed time is only computed for
DLSDUs successfully transferred, as described previously for throughput.

In connection mode, transit delay is negotiated on an end-to-end basis during connection
establishment. For each connection, transit delay is negotiated for the transmit and receive
directions separately by specifying the target value and maximum acceptable value. For
connectionless-mode service, a DLS user selects a particular value within the supported range
using the DL_UDQOS_REQ primitive, and the value may be changed for each DLSDU
submitted for connectionless transmission.

The transit delay for an individual DLSDU may be increased if the receiving DLS user flow
controls the interface. The average and maximum transit delay values exclude any DLS user
flow control of the interface. The values are specified in milliseconds, and assume a DLSDU size
of 128 octets.

Parameter Format

typedef struct {
t_scalar_t dl_target_value;
t_scalar_t dl_accept_value;

} dl_transdelay_t;

This typedef is used to negotiate the transmit and receive transit delay values.

Parameter Definitions

dl_target_value
specifies the desired transit delay value.

dl_accept_value
specifies the maximum acceptable transit delay value.

4.3.3 Priority

Priority is negotiated locally between each DLS user and the DLS provider in connection-mode
service, and can also be specified for connectionless-mode service. The specification of priority is
concerned with the relationship between connections or the relationship between connectionless
data transfer requests.

The parameter specifies the relative importance of a connection with respect to:

• the order in which connections are to have their QOS degraded, if necessary

• the order in which connections are to be released to recover resources, if necessary.

For connectionless-mode service, the parameter specifies the relative importance of unit data
objects with respect to gaining use of shared resources.

116 Open Group Technical Specification (2000)

Quality of Data Link Service QOS Parameter Definitions

For connection-mode service, each DLS user negotiates a particular priority value with the DLS
provider during connection establishment. The value is specified by a minimum and a
maximum within a given range. For connectionless-mode service, a DLS user selects a particular
priority value within the supported range using the DL_UDQOS_REQ primitive, and the value
may be changed for each DLSDU submitted for connectionless transmission.

This parameter only has meaning in the context of some management entity or structure able to
judge relative importance. The priority has local significance only, with a value of zero being the
highest priority and 100 being the lowest priority.

Parameter Format

typedef struct {
t_scalar_t dl_min;
t_scalar_t dl_max;

} dl_priority_t;

Parameter Definitions

dl_min
specifies the minimum acceptable priority.

dl_max
specifies the maximum desired priority.

4.3.4 Protection

Protection is negotiated locally between each DLS user and the DLS provider in connection-
mode service, and can also be specified for connectionless-mode service. Protection is the extent
to which a DLS provider attempts to prevent unauthorized monitoring or manipulation of DLS
user-originated information.

Protection is specified by a minimum and maximum protection option within the following
range of possible protection options:

DL_NONE
DLS provider will not protect any DLS user data

DL_MONITOR
DLS provider will protect against passive monitoring

DL_MAXIMUM
DLS provider will protect against modification, replay, addition, or deletion of DLS user
data.

For connection-mode service, each DLS user negotiates a particular value with the DLS provider
during connection establishment. The value is specified by a minimum and a maximum within a
given range. For connectionless-mode service, a DLS user selects a particular value within the
supported range using the DL_UDQOS_REQ primitive, and the value may be changed for each
DLSDU submitted for connectionless transmission. Protection has local significance only.

Data Link Provider Interface (DLPI), Version 2 117

QOS Parameter Definitions Quality of Data Link Service

Parameter Format

typedef struct {
t_scalar_t dl_min;
t_scalar_t dl_max;

} dl_protect_t;

Parameter Definitions

dl_min
specifies the minimum acceptable protection.

dl_max
specifies the maximum desired protection.

4.3.5 Residual Error Rate

Residual error rate (RER) is the ratio of total incorrect, lost and duplicated DLSDUs to the total
DLSDUs transferred between DLS users during a period of time. The relationship between these
quantities is defined below:

RER =
DLSDUtot

DLSDUl + DLSDUi + DLSDUe___________________________

where

DLSDUtot = total DLSDUs transferred, which is the total of DLSDUl, DLSDUi, DLSDUe,
and correctly received DLSDUs

DLSDUe = DLSDUs received 2 or more times

DLSDUi = incorrectly received DLSDUs

DLSDUl = DLSDUs sent, but not received.

Parameter Format

t_scalar_t l_residual_error;

The residual error value is scaled by a factor of 1,000,000, since the parameter is stored as a
t_scalar_t integer in the QOS data structures. Residual error rate is not a negotiated QOS
parameter. Its value is determined by procedures outside the definition of DLPI. It is assumed to
be set by an administrative mechanism, which is informed of the value by network
management.

4.3.6 Resilience

Resilience is meaningful in connection mode only, and represents the probability of either: DLS
provider-initiated disconnects or DLS provider-initiated resets during a time interval of 10,000
seconds on a connection.

Resilience is not a negotiated QOS parameter. Its value is determined by procedures outside the
definition of DLPI. It is assumed to be set by an administrative mechanism, which is informed of
the value by network management.

118 Open Group Technical Specification (2000)

Quality of Data Link Service QOS Parameter Definitions

Parameter Format

typedef struct {
t_scalar_t dl_disc_prob;
t_scalar_t dl_reset_prob;

} dl_resilience_t;

Parameter Definitions

dl_disc_prob
specifies the probability of receiving aprovider-initiated disconnect, scaled by 10000.

dl_reset_prob
specifies the probability of receiving aprovider-initiated reset, scaled by 10000.

Data Link Provider Interface (DLPI), Version 2 119

QOS Data Structures Quality of Data Link Service

4.4 QOS Data Structures
To simplify the definition of the primitives containing QOS parameters and the discussion of
QOS negotiation, the QOS parameters are organized into four structures. This section defines the
structures and indicates which structures apply to which primitives.

Each structure is tagged with a type field contained in the first four bytes of the structure, similar
to the tagging of primitives. The type field has been defined because of the current volatility of
QOS parameter definition within the international standards bodies. If new QOS parameter sets
are defined in the future for the data link layer, the type field will enable DLPI to accommodate
these sets without breaking existing DLS user or provider implementations. However, DLS user
and provider software should be cognizant of the possibility that new QOS structure types may
be defined in future issues of the DLPI specification. If a DLS provider receives a structure type
that it does not understand in a given primitive, the error DL_BADQOSTYPE should be returned
to the DLS user in a DL_ERROR_ACK primitive.

Currently the following QOS structure types are defined:

DL_QOS_CO_RANGE1
QOS range structure for connection-mode service for Issue 1 of DLPI

DL_QOS_CO_SEL1
QOS selection structure for connection-mode service for Issue 1 of DLPI

DL_QOS_CL_RANGE1
QOS range structure for connectionless-mode service for Issue 1 of DLPI

DL_QOS_CL_SEL1
QOS selection structure for connectionless-mode service for Issue 1 of DLPI.

The syntax and semantics of each structure type is presented in the remainder of this section.

4.4.1 Structure DL_QOS_CO_RANGE1

Structure type DL_QOS_CO_RANGE1 enables a DLS user and DLS provider to pass between
them a range of QOS parameter values in the connection-mode service. The format of this
structure type is:

typedef struct {
t_uscalar_t dl_qos_type;
dl_through_t dl_rcv_throughput;
dl_transdelay_t dl_rcv_trans_delay;
dl_through_t dl_xmt_throughput;
dl_transdelay_t dl_xmt_trans_delay;
dl_priority_t dl_priority;
dl_protect_t dl_protection;
t_scalar_t dl_residual_error;
dl_resilience_t dl_resilience;

} dl_qos_co_range1_t;

where the value of dl_qos_type is DL_QOS_CO_RANGE1. The fields of this structure
correspond to the parameters defined in Section 4.3 on page 115. The throughput and transit
delay parameters are specified for each direction of transmission on a data link connection.

This structure type is returned in the dl_qos_range_length and dl_qos_range_offset fields of the
DL_INFO_ACK, and specifies the supported ranges of service quality supported by the DLS
provider. In other words, it specifies the available range of QOS parameter values that may be
specified on a DL_CONNECT_REQ.

120 Open Group Technical Specification (2000)

Quality of Data Link Service QOS Data Structures

For the DL_CONNECT_REQ and DL_CONNECT_IND primitives, this structure specifies the
negotiable range of connection-mode QOS parameter values. See Section 4.5 on page 123 for the
semantics of this structure in these primitives.

4.4.2 Structure DL_QOS_CO_SEL1

Structure type DL_QOS_CO_SEL1 conveys selected QOS parameter values for connection-mode
service between the DLS user and DLS provider. The format of this structure type is:

typedef struct {
t_uscalar_t dl_qos_type;
t_scalar_t dl_rcv_throughput;
t_scalar_t dl_rcv_trans_delay;
t_scalar_t dl_xmt_throughput;
t_scalar_t dl_xmt_trans_delay;
t_scalar_t dl_priority;
t_scalar_t dl_protection;
t_scalar_t dl_residual_error;
dl_resilience_t dl_resilience;

} dl_qos_co_sel1_t;

where the value of dl_qos_type is DL_QOS_CO_SEL1. The fields of this structure correspond to
the parameters defined in Section 4.3 on page 115. The throughput and transit delay parameters
are specified for each direction of transmission on a data link connection.

This structure type is returned in the dl_qos_length and dl_qos_offset fields of the DL_INFO_ACK,
and specifies the current or default QOS parameter values associated with a stream. Default
values are returned prior to connection establishment, and currently negotiated values are
returned when a connection is active on the stream.

The structure type is used in the DL_CONNECT_RES to enable the responding DLS user to
select particular QOS parameter values from the available range. The DL_CONNECT_CON
primitive returns the selected values to the calling DLS user in this structure. See Section 4.5 on
page 123 for the semantics of this structure in these primitives.

4.4.3 Structure DL_QOS_CL_RANGE1

Structure type DL_QOS_CL_RANGE1 enables a DLS user and DLS provider to pass between
them a range of QOS parameter values in the connectionless-mode service. The format of this
structure type is:

typedef struct {
t_uscalar_t dl_qos_type;
dl_transdelay_t dl_trans_delay;
dl_priority_t dl_priority;
dl_protect_t dl_protection;
t_scalar_t dl_residual_error;

} dl_qos_cl_range1_t;

where the value of dl_qos_type is DL_QOS_CL_RANGE1. The fields of this structure correspond
to the parameters defined in <REFERENCE UNDEFINED>(qodpdef).

This structure type is returned in the dl_qos_range_length and dl_qos_range_offset fields of the
DL_INFO_ACK, and specifies the range of connectionless-mode QOS parameter values
supported by the DLS provider on the stream. The DLS user may select specific values from this
range using the DL_UDQOS_REQ primitive, as described in Section 4.5 on page 123.

Data Link Provider Interface (DLPI), Version 2 121

QOS Data Structures Quality of Data Link Service

4.4.4 Structure DL_QOS_CL_SEL1

Structure type DL_QOS_CL_SEL1 conveys selected QOS parameter values for connectionless-
mode service between the DLS user and DLS provider. The format of this structure type is:

typedef struct {
t_uscalar_t dl_qos_type;
t_scalar_t dl_trans_delay;
t_scalar_t dl_priority;
t_scalar_t dl_protection;
t_scalar_t dl_residual_error;

} dl_qos_cl_sel1_t;

where the value of dl_qos_type is DL_QOS_CL_SEL1. The fields of this structure correspond to
the parameters defined in Section 4.3 on page 115. This structure type is returned in the
dl_qos_length and dl_qos__offset fields of the DL_INFO_ACK, and specifies the current or default
QOS parameter values associated with a stream. Default values are returned until the DLS user
issues a DL_UDQOS_REQ to change the values, after which the currently selected values will be
returned. The structure type is also used in the DL_UDQOS_REQ primitive to enable a DLS user
to select particular QOS parameter values from the supported range, as described in Section 4.5
on page 123.

122 Open Group Technical Specification (2000)

Quality of Data Link Service Procedures for QOS Negotiation and Selection

4.5 Procedures for QOS Negotiation and Selection
This section describes the methods used for negotiating and/or selecting QOS parameter values.
In the connection-mode service, some QOS parameter values may be negotiated during
connection establishment. For connectionless-mode service, parameter values may be selected
for subsequent data transmission.

Throughout this section, two special QOS values are referenced. These are defined for all the
parameters used in QOS negotiation and selection. The values are:

DL_UNKNOWN
This value indicates that the DLS provider does not know the value for the field or does not
support that parameter.

DL_QOS_DONT_CARE
This value indicates that the DLS user does not care to what value the QOS parameter is set.

These values are used to distinguish between DLS providers that support and negotiate QOS
parameters and those that cannot. The following sections include the interpretation of these
values during QOS negotiation and selection.

4.5.1 Connection-mode QOS Negotiation

The current connection-mode QOS parameters can be divided into three types as follows:

• those that are negotiated end-to-end between peer DLS users and the DLS provider during
connection establishment (throughput and transit delay)

• those that are negotiated locally between each DLS user and the DLS provider during
connection establishment (priority and protection)

• those that cannot be negotiated (residual error rate and resilience).

The rules for processing these three types of parameters during connection establishment are
described in this section.

The current definition of most existing data link protocols does not describe a mechanism for
negotiating QOS parameters during connection establishment. As such, DLPI does not require
every DLS provider implementation to support QOS negotiation. If a given DLS provider
implementation cannot support QOS negotiation, two alternatives are available:

• The DLS provider may specify that any or all QOS parameters are unknown. This is
indicated to the DLS user in the DL_INFO_ACK, where the values in the QOS range field
(indicated by dl_qos_range_length and dl_qos_range_offset) and the current QOS field
(indicated by dl_qos_length and dl_qos_offset) of this primitive are set to DL_UNKNOWN.
This value will also be indicated on the DL_CONNECT_IND and DL_CONNECT_CON
primitives. If the DLS provider does not support any QOS parameters, the QOS length field
may be set to zero in each of these of these primitives.

• The DLS provider may interpret QOS parameters with strictly local significance, and their
values in the DL_CONNECT_IND primitive will be set to DL_UNKNOWN.

A DLS user need not select a specific value for each QOS parameter. The special QOS parameter
value, DL_QOS_DONT_CARE, is used if the DLS user does not care what quality of service is
provided for a particular parameter. The negotiation procedures presented below explain the
exact semantics of this value during connection establishment.

If QOS parameters are supported by the DLS provider, the provider will define a set of default
QOS parameter values that are used whenever DL_QOS_DONT_CARE is specified for a QOS
parameter value. These default values can be defined for all DLS users or can be defined on a

Data Link Provider Interface (DLPI), Version 2 123

Procedures for QOS Negotiation and Selection Quality of Data Link Service

per DLS user basis. The default parameter value set is returned in the QOS field (indicated by
dl_qos_length and dl_qos_offset) of the DL_INFO_ACK before a DLS user negotiates QOS
parameter values.

DLS provider addendum documentation must describe the known ranges of support for the
QOS parameters and the default values, and also specify whether they are used in a local
manner only.

The following procedures are used to negotiate QOS parameter values during connection
establishment:

1. The DL_CONNECT_REQ specifies the DLS user’s desired range of QOS values in the
dl_qos_co_range1_t structure. The target and least-acceptable values are specified for
throughput and transit delay, as described in Section 4.3.1 on page 115, and Section 4.3.2 on
page 116. The target value is the value desired by the calling DLS user for the QOS
parameters. The least acceptable value is the lowest value the calling user will accept.
These values are specified separately for both the transmit and receive directions of the
connection.

If either value is set to DL_QOS_DONT_CARE the DLS provider will supply a default
value, subject to the following consistency constraints:

• If DL_QOS_DONT_CARE is specified for the target value, the value chosen by the DLS
provider may not be less than the least-acceptablevalue.

• If DL_QOS_DONT_CARE is specified for the least-acceptable value, the value set by
the DLS provider cannot be greater than the target value.

• If DL_QOS_DONT_CARE is specified for both the target and least-acceptable value,
the DLS provider is free to select any value, without constraint, for the target and least
acceptable values.

For priority and protection, the DL_CONNECT_REQ specifies a minimum and maximum
desired value as defined in Section 4.3.3 on page 116 and Section 4.3.4 on page 117. As
with throughput and transit delay, the DLS user may specify a value of
DL_QOS_DONT_CARE for either the minimum or maximum value. The DLS provider
will interpret this value subject to the following consistency constraints:

• If DL_QOS_DONT_CARE is specified for the maximum value, the value chosen by the
DLS provider may not be less than the minimum value.

• If DL_QOS_DONT_CARE is specified for the minimum value, the value set by the DLS
provider cannot be greater than the maximum value.

• If DL_QOS_DONT_CARE is specified for both the minimum and maximum values, the
DLS provider is free to select any value, without constraint, for the maximum and
minimum values.

The values of the residual error rate and resilience parameters in the DL_CONNECT_REQ
have no meaning and are ignored by the DLS provider.

If the value of dl_qos_length in the DL_CONNECT_REQ is set to zero by the DLS user, the
DLS provider should treat all QOS parameter values as if they were set to
DL_QOS_DONT_CARE, selecting any value in its supported range.

If the DLS provider cannot support throughput, transit delay, priority, and protection
values within the ranges specified in the DL_CONNECT_REQ, a DL_DISCONNECT_IND
should be sent to the calling DLS user.

124 Open Group Technical Specification (2000)

Quality of Data Link Service Procedures for QOS Negotiation and Selection

2. If the requested ranges of values for throughput and transit delay in the
DL_CONNECT_REQ are acceptable to the DLS provider, the QOS parameters will be
adjusted to values the DLS provider will support. Only the target value may be adjusted,
and it is set to a value the DLS provider is willing to provide (which may be of lower QOS
than the target value). The least-acceptable value cannot be modified. The updated QOS
range is then sent to the called DLS user in the dl_qos_co_range1_t structure of the
DL_CONNECT_IND, where it is interpreted as the available range of service.

If the requested range of values for priority and protection in the DL_CONNECT_REQ is
acceptable to the DLS provider, an appropriate value within the range is selected and
saved for each parameter; these selected values will be returned to the DLS user in the
corresponding DL_CONNECT_CON primitive. Because priority and protection are
negotiated locally, the DL_CONNECT_IND will not contain values selected during
negotiation with the calling DLS user. Instead, the DLS provider will offer a range of values
in the DL_CONNECT_IND that will be supported locally for the called DLS user.

The DLS provider will also include the supported values for residual error rate and
resilience in the DL_CONNECT_IND that is passed to the called DLS user.

If the DLS provider does not support negotiation of throughput, transit delay, priority, or
protection, a value of DL_UNKNOWN should be set in the least-acceptable, target,
minimum, and maximum value fields of the DL_CONNECT_IND. Also, if the DLS
provider does not support any particular QOS parameter, DL_UNKNOWN should be
specified in all value fields for that parameter. If the DLS provider does not support any
QOS parameters, the value of dl_qos_length may be set to zero in the DL_CONNECT_IND.

3. Upon receiving the DL_CONNECT_IND, the called DLS user examines the QOS
parameter values and selects a specific value from the proffered range of the throughput,
transit delay, priority, and protection parameters. If the called DLS user does not agree on
values in the given range, the connection should be refused with a
DL_DISCONNECT_REQ primitive. Otherwise, the selected values are returned to the DLS
provider in the dl_qos_co_sel1_t structure of the DL_CONNECT_RES primitive.

The values of residual error rate and resilience in the DL_CONNECT_RES are ignored by
the DLS provider. These parameters may not be negotiated by the called DLS user. The
selected values of throughput and transit delay are meaningful, however, and are adopted
for the connection by the DLS provider. Similarly, the selected priority and protection
values are adopted with local significance for the called DLS user.

If the user specifies DL_QOS_DONT_CARE for either throughput, transit delay, priority,
or protection on the DL_CONNECT_RES, the DLS provider will select a value from the
range specified for that parameter in the DL_CONNECT_IND primitive. Also, a value of
zero in the dl_qos_length field of the DL_CONNECT_RES is equivalent to
DL_QOS_DONT_CARE for all QOS parameters.

4. Upon completion of connection establishment, the values of throughput and transit delay
as selected by the called DLS user are returned to the calling DLS user in the
dl_qos_co_sel1_t structure of the DL_CONNECT_CON primitive. The values of priority
and protection that were selected by the DLS provider from the range indicated in the
DL_CONNECT_REQ will also be returned in the DL_CONNECT_CON. This primitive
will also contain the values of residual error rate and resilience associated with the newly
established connection. The DLS provider also saves the negotiated QOS parameter values
for the connection, so that they may be returned in response to a DL_INFO_REQ primitive.

As with DL_CONNECT_IND, if the DLS provider does not support negotiation of
throughput, transit delay, priority, or protection, a value of DL_UNKNOWN should be

Data Link Provider Interface (DLPI), Version 2 125

Procedures for QOS Negotiation and Selection Quality of Data Link Service

returned in the selected value fields. Furthermore, if the DLS provider does not support
any particular QOS parameter, DL_UNKNOWN should be specified in all value fields for
that parameter, or the value of dl_qos_length may be set to zero in the
DL_CONNECT_CON primitive.

4.5.2 Connectionless-mode QOS Selection

This section describes the procedures for selecting QOS parameter values that will be associated
with the transmission of connectionless data or acknowledged connectionless data.

As with connection-mode protocols, the current definition of most existing (acknowledged)
connectionless data link protocols does not define a quality of service concept. As such, DLPI
does not require every DLS provider implementation to support QOS parameter selection. The
DLS provider may specify that any or all QOS parameters are unsupported. This is indicated to
the DLS user in the DL_INFO_ACK, where the values in the supported range field (indicated by
dl_qos_range_length and dl_qos_range_offset) and the current QOS field (indicated by dl_qos_length
and dl_qos_offset) of this primitive are set to DL_UNKNOWN. If the DLS provider supports no
QOS parameters, the QOS length fields in the DL_INFO_ACK may be set to zero.

If the DLS provider supports QOS parameter selection, the DL_INFO_ACK primitive will
specify the supported range of parameter values for transit delay, priority, protection and
residual error rate. Default values are also returned in the DL_INFO_ACK.

For each DL_UNITDATA_REQ or DL_DATA_ACK_REQ, the DLS provider should apply the
currently selected QOS parameter values to the transmission. If no values have been selected,
the default values should be used.

At any point during data transfer, the DLS user may issue a DL_UDQOS_REQ primitive to select
new values for the transit delay, priority, and protection parameters. These values are selected
using the dl_qos_cl_sel1_t structure. The residual error rate parameter is ignored by this primitive
and cannot be set by a DLS user.

In the DL_UDQOS_REQ, the DLS user need not require a specific value for every QOS
parameter. DL_QOS_DONT_CARE may be specified if the DLS user does not care what quality
of service is provided for a particular parameter. When specified, the DLS provider should retain
the current (or default if no previous selection has occurred) value for that parameter.

126 Open Group Technical Specification (2000)

Appendix A

Primitives for Management Services

This appendix presents the optional primitives to perform essential management functions. The
management functions supported are get and set of physical address, and statistics gathering.

Data Link Provider Interface (DLPI), Version 2 127

DL_GET_STATISTICS_ACK Primitives for Management Services

NAME
DL_GET_STATISTICS_ACK (dl_get_statistics_ack_t) — returns statistics in reponse to the
DL_GET_STATISTICS_REQ. The contents of the statistics block is defined in the DLS Provider
specific addendum.

SYNOPSIS
The message consists of one M_PCPROTO message block containing the structure shown
below:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_stat_length;
t_uscalar_t dl_stat_offset;

} dl_get_statistics_ack_t;

PARAMETERS

dl_primitive
conveys DL_GET_STATISTICS_ACK.

dl_stat_len
conveys the length of the statistics structure.

dl_stat_offset
conveys the offset from the beginning of the M_PCROTO message block where the statistics
information resides.

STATE
The message is valid in any state in which a local acknowledgement is not pending.

NEW STATE
The resulting state is unchanged

128 Open Group Technical Specification (2000)

Primitives for Management Services DL_GET_STATISTICS_REQ

NAME
DL_GET_STATISTICS_REQ (dl_get_statistics_req_t) — directs the DLS provider to return
statistics

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below:

typedef struct {
t_uscalar_t dl_primitive;

} dl_get_statistics_req_t;

PARAMETERS

dl_primitive
conveys DL_GET_STATISTICS_REQ.

STATE
The message is valid in any state in which a local acknowledgement is not pending.

NEW STATE
The resulting state is unchanged

RESPONSE
The DLS Provider responds to this request with a DL_GET_STATISTICS_ACK if the primitive is
supported. Otherwise, a DL_ERROR_ACK is returned.

ERRORS

DL_NOTSUPPORTED
Primitive is known but not supported by the DLS Provider.

Data Link Provider Interface (DLPI), Version 2 129

DL_PHYS_ADDR_ACK Primitives for Management Services

NAME
DL_PHYS_ADDR_ACK (dl_phys_addr_ack_t) — this primitive returns the value for the physical
address to the link user in response to a DL_PHYS_ADDR_REQ.

SYNOPSIS
The message consists of M_PCPROTO message block containing the following structure:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_addr_length;
t_uscalar_t dl_addr_offset;

} dl_phys_addr_ack_t;

PARAMETERS

dl_primitive
conveys DL_PHYS_ADDR_ACK.

dl_addr_length
conveys length of the physical address.

dl_addr_offset
conveys the offset from the beginning of the M_PCPROTO message block.

STATE
The message is valid in any state in response to a DL_PHYS_ADDR_REQ.

NEW STATE
The resulting state is unchanged.

130 Open Group Technical Specification (2000)

Primitives for Management Services DL_PHYS_ADDR_REQ

NAME
DL_PHYS_ADDR_REQ (dl_phys_addr_req_t) — this primitive requests the DLS provider to
return either the default (factory) or the current value of the physical address associated with the
stream depending upon the value of the address type selected in the request.

SYNOPSIS
The message consists of one M_PROTO message block containing the structure shown below:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_addr_type;

} dl_phys_addr_req_t;

PARAMETERS

dl_primitive
conveys DL_PHYS_ADDR_REQ.

dl_addr_type
conveys the type of address requested — factory physical address or current physical
address:

DL_FACT_PHYS_ADDR
factory physical address

DL_CURR_PHYS_ADDR
current physical address.

STATE
The message is valid in any attached state in which a local acknowledgement is not pending. For
a style 2 provider, this would be after a PPA is attached using the DL_ATTACH_REQ. For a
Style 1 provider, the PPA is implicitly attached after the stream is opened.

NEW STATE
The resulting state is unchanged.

RESPONSE
The provider responds to the request with a DL_PHYS_ADDR_ACK if the request is supported.
Otherwise, a DL_ERROR_ACK is returned.

ERRORS

DL_NOTSUPPORTED
Primitive is known, but not supported by the DLS Provider.

DL_OUTSTATE
The primitive was issued from an invalid state.

Data Link Provider Interface (DLPI), Version 2 131

DL_SET_PHYS_ADDR_REQ Primitives for Management Services

NAME
DL_SET_PHYS_ADDR_REQ (dl_set_phys_addr_req_t) — sets the physical address value for all
streams for that provider for a particular PPA.

SYNOPSIS
The message consists of M_PROTO message block which contains the following structure:

typedef struct {
t_uscalar_t dl_primitive;
t_uscalar_t dl_addr_length;
t_uscalar_t dl_addr_offset;

} dl_set_phys_addr_req_t;

PARAMETERS

dl_primitive
conveys DL_SET_PHYS_ADDR_REQ.

dl_addr_offset
conveys the offset from the beginning of the M_PROTO message block.

dl_addr_length
conveys the length of the requested hardware address.

STATE
The message is valid in any attached state in which a local acknowledgement is not pending. For
a Style 2 provider, this would be after a PPA is attached using the DL_ATTACH_REQ.For a Style
1 provider, the PPA is implicitly attached after the stream is opened.

NEW STATE
The resulting state is unchanged

RESPONSE
The provider responds to the request with a DL_OK_ACK on successful completion. Otherwise,
a DL_ERROR_ACK is returned.

ERRORS

DL_BADADDR
The address information was invalid or was in an incorrect format.

DL_BUSY
One or more streams for that particular PPA are in the DL_BOUND state.

DL_NOTSUPPORTED
Primitive is known, but not supported by the DLS Provider.

DL_OUTSTATE
The primitive was issued from an invalid state.

DL_SYSERR
A system error has occurred

132 Open Group Technical Specification (2000)

Appendix B

Allowable Sequence of DLPI Primitives

This appendix presents the allowable sequence of DLPI primitives. The sequence is described
using a state transition table that defines possible states as maintained by the DLS provider.

The state transition table describes transitions based on the current state of the interface and a
given DLPI event. Each transition consists of a state change and possibly an interface action.

The states, events, and related transition actions are described below, followed by the state
transition table itself.

The DLS provider is required to acknowlege the majority of requests from the user with a locally
generated acknowlegement (either a DL_OK_ACK, some specific DL_xxx_ACK or a
DL_ERROR_ACK primitive). These acknowlegement primitives are M_PCPROTO messages.

While expecting these responses, the user is said to "have a local acknowlegement pending".

The DLS provider can generate a DL_ERROR_ACK primitive in response to a
DL_CONNECT_REQ, DL_RESET_REQ or DL_TEST/XID_REQ/RES primitive even though a
positive acknowlegement is not required.

Data Link Provider Interface (DLPI), Version 2 133

DLPI States Allowable Sequence of DLPI Primitives

B.1 DLPI States
The following table describes the states associated with DLPI. It presents the state name used in
the state transition table , the corresponding DLPI state name used throughout this specification,
a brief description of the state, and an indication of whether the state is valid for connection-
oriented data link service (DL_CODLS), connectionless data link service (DL_CLDLS),
acknowledged connectionless data link service (ACLDLS) or all.

Table B-1 States Associated with DLPI
__

State DLPI State Description Service
Type__LL

L

LL
L

LL
L

LL
L

LL
L

Stream opened but PPA not
attached

0) UNATTACHED DL_UNATTACHED ALL

The DLS user is waiting for an
acknowledgement of a
DL_ATTACH_REQ

1) ATTACH PEND DL_ATTACH_PENDING ALL

The DLS user is waiting for an
acknowledgement of a
DL_DETACH_REQ

2) DETACH PEND DL_DETACH_PENDING ALL

Stream is attached but not
bound to a DLSAP

3) UNBOUND DL_UNBOUND ALL

The DLS user is waiting for an
acknowledgement of a
DL_BIND_REQ

4) BIND PEND DL_BIND_PENDING ALL

The DLS user is waiting for an
acknowledgement of a
DL_UNBIND_REQ

5) UNBIND PEND DL_UNBIND_PENDING ALL

The stream is bound and
activated for use - connection
establishment or connectionless
data transfer may take place

6) IDLE DL_IDLE ALL

The DLS user is waiting for an
acknowledgement of a
DL_UDQOS_REQ

7) UDQOS PEND DL_UDQOS_PENDING DL_CLDLS

An outgoing connection is
pending - the DLS user is
waiting for a
DL_CONNECT_CON

8) OUTCON PEND DL_OUTCON_PENDING DL_CODLS

An incoming connection is
pending - the DLS provider is
waiting for a
DL_CONNECT_RES

9) INCON PEND DL_INCON_PENDING DL_CODLS

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

134 Open Group Technical Specification (2000)

Allowable Sequence of DLPI Primitives DLPI States

__
State DLPI State Description Service

Type__LL
L

LL
L

LL
L

LL
L

LL
L

The DLS user is waiting for an
acknowledgement of a
DL_CONNECT_RES

10) CONN_RES PEND DL_CONN_RES_PENDING DL_CODLS

Connection-mode data transfer
may take place

11) DATAXFER DL_DATAXFER DL_CODLS

A user-initiated reset is
pending - the DLS user is
waiting for a DL_RESET_CON

12) USER RESET PEND DL_USER_RESET_PENDING DL_CODLS

A provider-initiated reset is
pending - the DLS provider is
waiting for a DL_RESET_RES

13) PROV RESET PEND DL_PROV_RESET_PENDING DL_CODLS

The DLS user is waiting for an
acknowledgement of a
DL_RESET_RES

14) RESET_RES PEND DL_RESET_RES_PENDING DL_CODLS

The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ
issued from the
DL_OUTCON_PENDING state

15) DISCON 8 PEND DL_DISCON8_PENDING DL_CODLS

The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ
issued from the
DL_INCON_PENDING state

16) DISCON 9 PEND DL_DISCON9_PENDING DL_CODLS

The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ
issued from the
DL_DATAXFER state

17) DISCON 11 PEND DL_DISCON11_PENDING DL_CODLS

The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ
issued from the
DL_USER_RESET_PENDING
state

18) DISCON 12 PEND DL_DISCON12_PENDING DL_CODLS

The DLS user is waiting for an
acknowledgement of a
DL_DISCONNECT_REQ
issued from the
DL_PROV_RESET_PENDING
state

19) DISCON 13 PEND DL_DISCON13_PENDING DL_CODLS

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Data Link Provider Interface (DLPI), Version 2 135

DLPI States Allowable Sequence of DLPI Primitives

__
State DLPI State Description Service

Type__LL
L

LL
L

LL
L

LL
L

LL
L

The DLS user is waiting for an
acknowledgement of a
DL_SUBS_BIND_REQ

20) SUBS_BIND PEND DL_SUBS_BIND_PND ALL

The DLS user is waiting for an
acknowledgement of a
DL_SUBS_UNBIND_REQ

21) SUBS_UNBIND PEND DL_SUBS_UNBIND_PND ALL

__LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

136 Open Group Technical Specification (2000)

Allowable Sequence of DLPI Primitives Variables and Actions for State Transition Table

B.2 Variables and Actions for State Transition Table
The following tables describe variables and actions used to describe the DLPI state transitions.

The variables are used to distinguish various uses of the same DLPI primitive. For example, a
DL_CONNECT_RES causes a different state transition depending on the current number of
outstanding connect indications. To distinguish these different connect response events, a
variable is used to track the number of outstanding connect indications.

__
VARIABLE DESCRIPTION__

The token contained in a DL_CONNECT_RES that indicates on which
stream the connection will be established. A value of zero indicates that
the connection will be established on the stream where the
DL_CONNECT_IND arrived. A non-zero value indicates the connection
will be passed to another stream.

token

Number of outstanding connect indications - those to which the DLS user
has not responded. Actions in the state tables that manipulate this value
may be disregarded when providing connectionlessservice.

outcnt

__L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-2 DPLI State Transition Table Variables

The actions represent steps the DLS provider must take during certain state transitions to
maintain the interface state. When an action is indicated in the state transition table, the DLS
provider should change the state as indicated and perform the specified action.

ACTION DESCRIPTION___LL LL LL

1 outcnt = outcnt + 1

2 outcnt = outcnt - 1

Pass connection to the stream
indicated by the token in the
DL_CONNECT_RES primitive

3

___L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

Table B-3 DLPI State Transition Actions

Data Link Provider Interface (DLPI), Version 2 137

DLPI User-originated Events Allowable Sequence of DLPI Primitives

B.3 DLPI User-originated Events
The following table describes events initiated by the DLS user that correspond to the various
request and response primitives of DLPI. The table presents the event name used in the state
transition table, a brief description of the event (including the corresponding DLPI primitive),
and an indication of whether the event is valid for connection-oriented data link service
(DL_CODLS), connectionless data link service (DL_CLDLS), acknowledged connectionless data
link service (DL_ACLDLS) or all.

FSM EVENT DESCRIPTION SERVICE

TYPE___
ATTACH_REQ DL_ATTACH_REQ primitive ALL

DETACH_REQ DL_DETACH_REQ primitive ALL

BIND_REQ DL_BIND_REQ primitive ALL

SUBS_BIND_REQ DL_SUBS_BIND_REQ primitive ALL

UNBIND_REQ DL_UNBIND_REQ primitive ALL

SUBS_UNBIND_REQ DL_SUBS_UNBIND_REQ primitive ALL

UNITDATA_REQ DL_UNITDATA_REQ primitive DL_CLDLS

UDQOS_REQ DL_UDQOS_REQ primitive DL_CLDLS

CONNECT_REQ DL_CONNECT_REQ primitive DL_CODLS

CONNECT_RES DL_CONNECT_RES primitive DL_CODLS

Received a passed connection from a
DL_CONNECT_RES primitive

PASS_CONN DL_CODLS

DISCON_REQ DL_DISCONNECT_REQ primitive DL_CODLS

DATA_REQ DL_DATA_REQ primitive DL_CODLS

RESET_REQ DL_RESET_REQ primitive DL_CODLS

RESET_RES DL_RESET_RES primitive DL_CODLS

DATA_ACK_REQ DL_DATA_ACK_REQ primitive DL_ACLDLS

REPLY_REQ DL_REPLY_REQ primitive DL_ACLDLS

REPLY_UPDATE_REQ DL_REPLY_UPDATE_REQ primitive DL_ACLDLS___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-4 DLPI User-oriented Events

138 Open Group Technical Specification (2000)

Allowable Sequence of DLPI Primitives DLPI Provider-Originated Events

B.4 DLPI Provider-Originated Events
The following table describes the events initiated by the DLS provider that correspond to the
various indication, confirmation, and acknowledgement primitives of DLPI. The table presents
the event name used in the state transition table, a brief description of the event (including the
corresponding DLPI primitive), and an indication of whether the event is valid for connection-
oriented data link service (DL_CODLS), connectionless data link service (DL_CLDLS),
acknowledged connectionless service (DL_ACDLS) or all.

Data Link Provider Interface (DLPI), Version 2 139

DLPI Provider-Originated Events Allowable Sequence of DLPI Primitives

__
FSM EVENT DESCRIPTION SERVICE

TYPE__
BIND_ACK DL_BIND_ACK primitive ALL

SUBS_BIND_ACK DL_SUBS_BIND_ACK primitive ALL

UNITDATA_IND DL_UNITDATA_IND primitive DL_CLDLS

UDERROR_IND DL_UDERROR_IND primitive DL_CLDLS

CONNECT_IND DL_CONNECT_IND primitive DL_CODLS

CONNECT_CON DL_CONNECT_CON primitive DL_CODLS

DL_DISCONNECT_IND primitive
when outcnt == 0

DISCON_IND1 DL_CODLS

DL_DISCONNECT_IND primitive
when outcnt == 1

DISCON_IND2 DL_CODLS

DL_DISCONNECT_INDprimitive
when outcnt >1

DISCON_IND3 DL_CODLS

DATA_IND DL_DATA_IND primitive DL_CODLS

RESET_IND DL_RESET_IND primitive DL_CODLS

RESET_CON DL_RESET_CON primitive DL_CODLS

DL_OK_ACK primitive when
outcnt == 0

OK_ACK1 ALL

DL_OK_ACK primitive when
outcnt == 1 and token == 0

OK_ACK2 DL_CODLS

DL_OK_ACK primitive when
outcnt == 1 and token != 0

OK_ACK3 DL_CODLS

DL_OK_ACK primitive when
outcnt >1 and token != 0

OK_ACK4 DL_CODLS

ERROR_ACK DL_ERROR_ACK ALL

DATA_ACK_IND DL_DATA_ACK_IND ACLDLS

DATA_ACK_STATUS_IND DL_DATA_ACK_STATUS_IND ACLDLS

REPLY_IND DL_REPLY_IND ACLDLS

REPLY_STATUS_IND DL_REPLY_STATUS_IND ACLDLS

REPLY_UPDATE_STATUS_IND DL_REPLY_UPDATE_STATUS_IND ACLDLS__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-5 DLPI Provider-Originated Events

140 Open Group Technical Specification (2000)

Allowable Sequence of DLPI Primitives DLPI Provider-Originated Events

B.5 DLPI State Transition Table
Table B-6, Table B-7, Table B-8, Table B-9 and Table B-10 describe the DLPI state transitions. Each
column represents a state of DLPI (see Table B-1 on page 134, and each row represents a DLPI
event (see Table B-4 on page 138 and Table B-5). The intersecting transition cell defines the
resulting state transition (that is, next state) and associated actions, if any, that must be executed
by the DLS provider to maintain the interface state. Each cell may contain the following:

- this transition cannot occur.

n the current input results in a transition to state ‘‘n’’

n [a] the list of actions ‘‘a’’ should be executed following the specified state transition
‘‘n’’ (see Table B-3 on page 137 for actions).

The DL_INFO_REQ, DL_INFO_ACK, DL_TOKEN_REQ, and DL_TOKEN_ACK primitives are
excluded from the state transition table because they can be issued from many states and, when
fully processed, do not cause a state transition to occur. However, the DLS user may not issue a
DL_INFO_REQ or DL_TOKEN_REQ if any local acknowledgements are pending. In other
words, these two primitives may not be issued until the DLS user receives the acknowledgement
for any previously issued primitive that is expecting local positive acknowledgement. Thus,
these primitives may not be issued from the following states:

DL_ATTACH_PENDING
DL_DETACH_PENDING
DL_BIND_PENDING
DL_SUBS_BIND_PND
DL_SUBS_UNBIND_PND
DL_UNBIND_PENDING
DL_UDQOS_PENDING
DL_CONN_RES_PENDING
DL_RESET_RES_PENDING
DL_DISCON8_PENDING
DL_DISCON9_PENDING
DL_DISCON11_PENDING
DL_DISCON12_PENDING
DL_DISCON13_PENDING

Failure to comply by this restriction may result in loss of primitives at the stream head if the DLS
user is a user process.

Once a DL_INFO_REQ or DL_TOKEN_REQ has been issued, the DLS provider must respond
with the appropriate acknowledgement primitive.

The following rules apply to the maintenance of DLPI state:

• The DLS provider is responsible for keeping a record of the state of the interface as viewed
by the DLS user, to be returned in the DL_INFO_ACK.

• The DLS provider may never generate a primitive that places the interface out of state (i.e.
would correspond to a "-" cell entry in the state transition table below).

• If the DLS provider generates a STREAMS M_ERROR message upstream, it should free any
further primitives processed by it’s write side put or service procedure.

• The close of a stream is considered an abortive action by the DLS user, and may be executed
from any state. The DLS provider must issue appropriate indications to the remote DLS user
when a close occurs. For example, if the DLPI state is DL_DATAXFER,a
DL_DISCONNECT_IND should be sent to the remote DLS user. The DLS provider should

Data Link Provider Interface (DLPI), Version 2 141

DLPI State Transition Table Allowable Sequence of DLPI Primitives

free any resources associated with that stream and reset the stream to its unopened
condition.

The following points clarify the state transition table:

• If the DLS provider supports connection-mode service, the value of the outcnt state variable
must be initialized to zero for each stream when that stream is first opened.

• The initial and final state for a style 2 DLS provider is DL_UNATTACHED. However,
because a style 1 DLS provider implicitly attaches a PPA to a stream when it is opened, the
initial and final DLPI state for a style 1 provider is DL_UNBOUND. The DLS user should not
issue DL_ATTACH_REQ or DL_DETACH_REQ primitives to a style 1 DLS provider.

• A DLS provider may have multiple connect indications outstanding (i.e. the DLS user has not
responded to them) at one time (see Section 3.2.2 on page 59). As the state transition table
points out, the stream on which those indications are outstanding will remain in the
DL_INCON_PENDING state until the DLS provider receives a response for all indications.

• The DLPI state associated with a given stream may be transferred to another stream only
when the DL_CONNECT_RES primitive indicates this behavior. In this case, the responding
stream (where the connection will be established) must be in the DL_IDLE state. This state
transition is indicated by the PASS_CONN event in table 9.

• The labeling of the states DL_PROV_RESET_PENDING and DL_USER_RESET_PENDING
indicate the party that started the local interaction, and does not necessarily indicate the
originator of the reset procedure.

• A DL_DATA_REQ primitive received by the DLS provider in the state
DL_PROV_RESET_PENDING (i.e. after a DL_RESET_IND has been passed to the DLS user)
or the state DL_IDLE (i.e. after a data link connection has been released) should be discarded
by the DLS provider.

• A DL_DATA_IND primitive received by the DLS user after the user has issued a
DL_RESET_REQ should be discarded.

To ensure accurate processing of DLPI primitives, the DLS provider must adhere to the
following rules concerning the receipt and generation of STREAMS M_FLUSH messages during
various state transitions:

• The DLS provider must be ready to receive M_FLUSH messages from upstream and flush it’s
queues as specified in the message.

• The DLS provider must issue an M_FLUSH message upstream to flush both the read and
write queues after receiving a successful DL_UNBIND_REQ primitive but before issuing the
DL_OK_ACK.

• If an incoming disconnect occurs when the interface is in the DL_DATAXFER,
DL_USER_RESET_PENDING, or DL_PROV_RESET_PENDING state, the DLS provider
must send up an M_FLUSH message to flush both the read and write queues before sending
up a DL_DISCONNECT_IND.

• If a DL_DISCONNECT_REQ is issued in the DL_DATAXFER, DL_USER_RESET_PENDING,
or DL_PROV_RESET_PENDING states, the DLS provider must issue an M_FLUSH message
upstream to flush both the read and write queues after receiving the successful
DL_DISCONNECT_REQ but before issuing the DL_OK_ACK.

• If a reset occurs when the interface is in the DL_DATAXFER or DL_USER_RESET_PENDING
state, the DLS provider must send up an M_FLUSH message to flush both the read and write
queues before sending up a DL_RESET_IND or DL_RESET_CON.

142 Open Group Technical Specification (2000)

Allowable Sequence of DLPI Primitives DLPI State Transition Table

If the DLS user keeps its own DLPI state, it may need to handle additional combinations of DLPI
states and primitives not described by the state transition tables. This is due to the fact that
allowable primitives issued by DLS provider and DLS user may cross at the interface, so that the
provider-originated event arrives after the DLS user has already changed its state according to
the user-generated event. The details are part of the provider-specific documentation.

The following table presents the allowed sequence of DLPI primitives for the common local
management phase of communication.

__
STATES UNATT. ATTACH DETACH UNBND BND UNBND IDLE SUBS_BND SUBS

PEND PEND PND PND PND UNBND
PND

EVENTS 0 1 2 3 4 5 6 20 21__
ATTACH_REQ 1 - - - - - - - -
DETACH_REQ - - - 2 - - - - -
BIND_REQ - - - 4 - - - - -
BIND_ACK - - - - 6 - - - -
SUBS_BIND_REQ - - - - - - 20 - -
SUBS_BIND_ACK - - - - - - - 6 -
UNBIND_REQ - - - - - - 5 - -
OK_ACK1 - 3 0 - - 3 - - 6
ERROR_ACK - 0 3 - 3 6 - - -
SUBS_UNBND_RQ - - - - - - 21 - -__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-6 DLPI State Transition - Local Management Phase

The following table presents the allowed sequence of DLPI primitives for the connectionless
data transfer phase.

STATES IDLE UDQOS

PEND
EVENTS 6 7________________________________
UDQOS_REQ 7 -
OK_ACK1 - 6
ERROR_ACK - 6
UNITDATA_REQ 6 -
UNITDATA_IND 6 -
UDERROR_IND 6 -________________________________L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L

Table B-7 DLPI State Transition - Connectionless DT Phase

Data Link Provider Interface (DLPI), Version 2 143

DLPI State Transition Table Allowable Sequence of DLPI Primitives

The following table presents the allowed sequence of DLPI primitives for the acknowledged
connectionless-mode data transfer phase.

__
STATES IDLE UDQOS

PEND
EVENTS 6 7__
UDQOS_REQ 7 -
OK_ACK1 - 6
ERROR_ACK - 6
DATA_ACK_REQ 6 -
REPLY_REQ 6 -
REPLY_UPDATE_REQ 6 -
DATA_ACK_IND 6 -
REPLY_IND 6 -
DATA_ACK_STATUS_IND 6 -
REPLY_STATUS_IND 6 -
REPLY_UPDATE_STATUS_IND 6 -
ERROR_ACK 6 -__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-8 DLPI State Transition - Acknowledged Connectionless DT Phase

The following table presents the allowed sequence of DLPI primitives for the connection
establishment phase of connection mode service.

__
STATES IDLE OUTCON INCON CONN_RES DATA- DISCON 8 DISCON 9

PEND PEND PEND XFER PEND PEND
EVENTS 6 8 9 10 11 15 16__
CONNECT_REQ 8 - - - - - -
CONNECT_RES - - 10 - - - -
DISCON_REQ - 15 16 - - - -
PASS_CONN 11 - - - - - -
CONNECT_IND 9 [1] - 9 [1] - - - -
CONNECT_CON - 11 - - - - -__
DISCON_IND1 - 6 - - 6 - -
(outcnt == 0)
DISCON_IND2 - - 6 [2] - - - -
(outcnt == 1)
DISCON_IND3 - - 9 [2] - - - -
(outcnt > 1)__
OK_ACK1 - - - - - 6 -
(outcnt == 0)
OK_ACK2 - - - 11 [2] - - 6 [2]
(outcnt == 1,
token == 0)
OK_ACK3 - - - 6 [2,3] - - 6 [2]
(outcnt == 1,
token != 0)
OK_ACK4 - - - 9 [2,3] - - 9 [2]
(outcnt > 1,
token != 0)
ERROR_ACK - 6 - 9 - 8 9__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-9 DLPI State Transition - Connection Establishment Phase

144 Open Group Technical Specification (2000)

Allowable Sequence of DLPI Primitives DLPI State Transition Table

The following table presents the allowed sequence of DLPI primitives for the connection mode
data transfer phase.

__
STATES IDLE DATA- USER PROV RESET_RES DISCON 11 DISCON 12 DISCON 13

XFER RESET RESET PEND PEND PEND PEND
PEND PEND

EVENTS 6 11 12 13 14 17 18 19__
DISCON_REQ - 17 18 19 - - - -
DATA_REQ - 11 - - - - - -
RESET_REQ - 12 - - - - - -
RESET_RES - - - 14 - - - -
DISCON_IND1 - 6 6 6 - - - -
(outcnt == 0)__
DATA_IND - 11 - - - - - -
RESET_IND - 13 - - - - - -
RESET_CON - - 11 - - - - -
OK_ACK1 - - - - 11 6 6 6
(outcnt == 0)
ERROR_ACK - - 11 - 13 11 12 13__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table B-10 DLPI State Transition - Connection-mode Data Transfer Phase

Data Link Provider Interface (DLPI), Version 2 145

Allowable Sequence of DLPI Primitives

146 Open Group Technical Specification (2000)

Appendix C

Precedence of DLPI Primitives

C.1 Overview
This appendix presents the precedence of DLPI primitives relative to one another. Two queues
are used to describe DLPI precedence rules. One queue contains DLS user-originated primitives
and corresponds to the STREAMS write queue of the DLS provider. The other queue contains
DLS provider-originated primitives and corresponds to the STREAMS read queue of the DLS
user. The DLS provider is responsible for determining precedence on its write queue and the
DLS user is responsible for determining precedence on its read queue as indicated in the
precedence tables given in this appendix.

For each precedence table, the rows (labeled ‘‘PRIM X’’) correspond to primitives that are on the
given queue and the columns (labeled ‘‘PRIM Y’’) correspond to primitives that are about to be
placed on that queue. Each pair of primitives (PRIM X, PRIM Y) may be manipulated resulting
in:

• Change of order, where the order of a pair of primitives is reversed if, and only if, the second
primitive in the pair (PRIM Y) is of a type defined to be able to advance ahead of the first
primitive in the pair (PRIM X).

• Deletion, where a primitive (PRIM X) may be deleted if, and only if, the primitive that
follows it (PRIM Y) is defined to be destructive with respect to that primitive. Destructive
primitives may always be added to the queue. Some primitives may cause both primitives in
the pair to be destroyed.

The precedence rules define the allowed manipulations of a pair of DLPI primitives. Whether
these actions are performed is the choice of the DLS provider for user-originated primitives and
the choice of the DLS user for provider-originated primitives.

Data Link Provider Interface (DLPI), Version 2 147

Write Queue Precedence Precedence of DLPI Primitives

C.2 Write Queue Precedence
The following table presents the precedence rules for DLS user-originated primitives on the DLS
provider’s STREAMS write queue. It assumes that only non-local primitives (i.e. those that
generate protocol data units to a peer DLS user) are queued by the DLS provider.

For connection establishment primitives, this table represents the possible pairs of DLPI
primitives when connect indications/responses are single-threaded. For the multi-threading
scenario, the following rules apply:

• ADL_CONNECT_RES primitive has no precedence over either a DL_CONNECT_RES or a
DL_DISCONNECT_REQ primitive that is associated with another connection correlation
number (dl_correlation), and should therefore be placed on the queue behind such
primitives.

• Similarly, a DL_DISCONNECT_REQ primitive has no precedence over either a
DL_CONNECT_RES or a DL_DISCONNECT_REQ primitive that is associated with another
connection correlation number, and should therefore be placed on the queue behind such
primitives. Notice, however, that a DL_DISCONNECT_REQ does have precedence over a
DL_CONNECT_RES primitive that is associated with the same correlation number (this is
indicated in the table below).

A DL_DISCONNECT_REQ does not have precedence over a queued DL_CONNECT_REQ. The
DLS provider, however, need not actually process the DL_CONNECT_REQ. Instead, both
primitives may be removed from the queue, provided that the DLS provider acknowledges the
DL_DISCONNECT_REQ by a DL_OK_ACK.

__
PRIM Y P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

PRIM X (on queue)__
P1 DL_INFO_REQ__
P2 DL_ATTACH_REQ__
P3 DL_DETACH_REQ__
P4 DL_BIND_REQ__
P5 DL_UNBIND_REQ__
P6 DL_UNITDATA_REQ 1__
P7 DL_UDQOS_REQ__
P8 DL_CONNECT_REQ 1__
P9 DL_CONNECT_RES 3 1 1__
P10 DL_TOKEN_REQ__
P11 DL_DISCONNECT_REQ 1__
P12 DL_DATA_REQ 5 1 3 3__
P13 DL_RESET_REQ 3__
P14 DL_RESET_RES 3 1 1__
P15 DL_SUBS_BIND_REQ__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table C-1 Write Queue Precedence
KEY:—
Code___
"blank" Empty box indicates a scenario which cannot take place.

1 Y has no precedence over X and should be placed on queue behind X.LL
L

148 Open Group Technical Specification (2000)

Precedence of DLPI Primitives Write Queue Precedence

2 Y has precedence over X and may advance ahead of X.
3 Y has precedence over X and X must be removed.
4 Y has precedence over X and both X and Y must be removed.
5 Y may have precedence over X (DLS provider’s choice) — if so X must be removed.L

L
L
L
L

Data Link Provider Interface (DLPI), Version 2 149

Read Queue Precedence Precedence of DLPI Primitives

C.3 Read Queue Precedence
The following table presents the precedence rules for DLS provider-originated primitives on the
DLS user’s STREAMS read queue.

For connection establishment primitives, this table represents the possible pairs of DLPI
primitives when connect indications/responses are single-threaded. For the multi-threading
scenario, the following rules apply:

1. A DL_CONNECT_IND primitive has no precedence over either a DL_CONNECT_IND or
a DL_DISCONNECT_IND primitive that is associated with another connection correlation
number (dl_correlation), and should therefore be placed on the queue behind such
primitives.

2. Similarly, a DL_DISCONNECT_IND primitive has no precedence over either a
DL_CONNECT_IND or a DL_DISCONNECT_IND primitive that is associated with
another connection correlation number, and should therefore be placed on the queue
behind such primitives.

3. A DL_DISCONNECT_IND does have precedence over a DL_CONNECT_IND primitive
that is associated with the same correlation number (this is indicated in the table below). If
a DL_DISCONNECT_IND is about to be placed on the DLS user’s read queue, the user
should scan the read queue for a possible DL_CONNECT_IND primitive with a matching
correlation number. If a match is found, both the DL_DISCONNECT_IND and matching
DL_CONNECT_IND should be removed.

If the DLS user is a user-level process, it’s read queue is the stream head read queue. Because a
user process has no control over the placement of DLS primitives on the stream head read
queue, a DLS user cannot straightforwardly initiate the actions specified in the following
precedence table. Except for the connection establishment scenario, the DLS user can ignore the
precedence rules defined in the table below. This is equivalent to saying the DLS user’s read
queue contains at most one primitive.

The only exception to this rule is the processing of connect indication/response primitives. A
problem arises if a user issues a DL_CONNECT_RES primitive when a DL_DISCONNECT_IND
is on the stream head read queue. The DLS provider will not be expecting the connect response
because it has forwarded the disconnect indication to the DLS user and is in the DL_IDLE state.
It will therefore generate an error upon seeing the DL_CONNECT_RES.To avoid this error, the
DLS user should not respond to a DL_CONNECT_IND primitive if the stream head read queue
is not empty. The assumption here is a non-empty queue may be holding a disconnect indication
that is associated with the connect indication that is being processed.

When connect indications/responses are single-threaded, a non-empty read queue can only
contain a DL_DISCONNECT_IND, which must be associated with the outstanding
DL_CONNECT_IND. This DL_DISCONNECT_IND primitive indicates to the DLS user that the
DL_CONNECT_IND is to be removed. The DLS user should not issue a response to the
DL_CONNECT_IND if a DL_DISCONNECT_IND is received.

The multi-threaded scenario is slightly more complex, because multiple DL_CONNECT_IND
and DL_DISCONNECT_IND primitives may be interspersed on the stream head read queue. In
this scenario, the DLS user should retrieve all indications on the queue before responding to a
given connect indication.

If a queued primitive is a DL_CONNECT_IND, it should be stored by the user process for
eventual response. If a queued primitive is a DL_DISCONNECT_IND, it should be matched
(using the correlation number) against any stored connect indications. The matched connect
indication should then be removed, just as is done in the single-threaded scenario.

150 Open Group Technical Specification (2000)

Precedence of DLPI Primitives Read Queue Precedence

PRIM Y P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

PRIM X (on queue)___
P1 DL_INFO_ACK 1 1 1 1 1 1 1 1___
P2 DL_BIND_ACK 1 1___
P3 DL_UNITDATA_IND 2 1 2 2 2___
P4 DL_UDERROR_IND 2 1 1 2 2___
P5 DL_CONNECT_IND 2 2 4___
P6 DL_CONNECT_CON 2 2 3 1 1___
P7 DL_TOKEN_ACK 1 1 1 1 1 1___
P8 DL_DISCONNECT_IND 2 1 2 2___
P9 DL_DATA_IND 2 2 5 1 3 3 2___
P10 DL_RESET_IND 2 2 3 2___
P11 DL_RESET_CON 2 2 3 1 1 2___
P12 DL_OK_ACK 1 1 1 1 1 1___
P13 DL_ERROR_ACK 1 1 1 1 1 1 1___
P14 DL_SUBS_BIND_ACK 1 1___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Table C-2 Read Queue Precedence

KEY:—
Code___
"blank" Empty box indicates a scenario which cannot take place.

1 Y has no precedence over X and should be placed on queue behind X.
2 Y has precedence over X and may advance ahead of X.
3 Y has precedence over X and X must be removed.
4 Y has precedence over X and both X and Y must be removed.
5 Y may have precedence over X (DLS provider’s choice) — if so X must be removed.LL

L
L
L
L
L
L

Data Link Provider Interface (DLPI), Version 2 151

Precedence of DLPI Primitives

152 Open Group Technical Specification (2000)

Appendix D

Guidelines for Protocol-independent DLS Users

DLPI enables a DLS user to be implemented in aprotocol-independent manner such that the DLS
user can operate over many DLS providers without changing the DLS user software. DLS user
implementors must adhere to the following guidelines, however, to achieve this independence:

• The protocol-specific service limits returned in the DL_INFO_ACK primitive (for example,
dl_max_sdu) must not be exceeded. The DLS user should access these limits and adhere to
them while interacting with the DLS provider.

• Protocol-specific DLSAP address and PPA identifier formats should be hidden from DLS user
software. Hard-coded addresses and identifiers must be avoided. The DLS user should
retrieve the necessary information from some other entity (such as a management entity or a
higher layer protocol entity) and insert it without inspection into the appropriate primitives.

• The DLS user should not be written to a specific style of DLS provider (that is, style 1 versus
style 2). The DL_INFO_ACK returns sufficient information to identify which style of
provider has been accessed, and the DLS user should perform (or not perform) a
DL_ATTACH_REQ accordingly.

• The names of devices should not be hard-coded into user-level programs that access a DLS
provider.

• The DLS user should access the dl_service_mode field of the DL_INFO_ACK primitive to
determine whether connection or connectionless services are available on a given stream.

Data Link Provider Interface (DLPI), Version 2 153

Guidelines for Protocol-independent DLS Users

154 Open Group Technical Specification (2000)

Appendix E

DLS Provider-Specific Information

DLPI is a general interface to the services of any DLS provider. However, areas have been
documented in this specification where DLS provider-specific information can be conveyed and
interpreted. This appendix summarizes all provider-specific issues as an aid to developers of
DLS provider implementations. As such, it forms a checklist of required information that should
be documented in some manner as part of the provider implementation. The areas DLS
provider-specific addendum documentation must address are:

• DLSAP Address Space

• PPA Access and Control

• Quality of Service

• DL_INFO_ACK Values

• Supported Services

• User State Transitions

For each area listed, a brief description is presented for the associated provider-specific item(s),
including references to the appropriate description in this specification.

E.1 DLSAP Address Space
See reference Section 1.4.2 on page 7, and DL_BIND_REQ on page 42.

The format of a DLSAP address is specific to each DLS provider, as is the management of that
address space. There are no restriction on the format or style of a DLSAP address. As such, a
specific implementation should document the format, size, and restrictions of a DLSAP address,
as well as information on how the address space is managed. For example, DLPI enables a DLS
user to choose a specific DLSAP address to be bound to a stream, but a given implementation
may pre-associate addresses with streams based, for example, on the major/minor device
number of the stream. In this case, the DLS user could only retrieve the address associated with
a stream.

If the DLS provider enables a user to select the DLSAP address for a stream, the implementation
must document the contents of the dl_sap field in the DL_BIND_REQ. This field must contain
sufficient information to enable the DLS provider to determine the chosen DLSAP address. This
may be the full DLSAP address (if it is not larger than sizeof (t_uscalar_t)) , or some
distinguishable part of that address. For example, an implementation of a DLS provider
conforming to the ISO 8802/2 address space might allow the DSAP or SSAP portion of the
DLSAP address to be specified here, where the MAC address portion remains constant over all
DLSAP addresses managed by that provider.

Another aspect of address management is whether the provider supports the ability to
dynamically allocate DLSAPs other than the requested DLSAP in a DL_BIND_REQ. Restrictions
on DLSAPs might cover the range of supported DLSAP values, services provided by a DLSAP,
connection management, and multiplexing. An example of connection management restrictions
is the number of connections allowed per DLSAP. Examples of multiplexing restrictions include
the number of DLSAPs per PPA, and requirements that certain DLSAPs are attached to specific
PPAs.

Data Link Provider Interface (DLPI), Version 2 155

DLSAP Address Space DLS Provider-Specific Information

E.2 Subsequent DLSAP Addresses
See reference DL_SUBS_BIND_REQ on page 49.

The IEEE 802.2 link layer standard allows two ways of specifying a DLSAP value:

• Using an IEEE reserved DLSAP which corresponds to a well-defined protocol.

• Using a privately defined DLSAP.

Previously, subnetworks used privately defined DLSAP values. As these subnetworks move into
the OSI world, they may exist in environments with other vendors machines. This presents a
problem because there are only 64 privately definable DLSAPS and any other vendor may
choose to use these same DLSAP values.

IEEE 802.1 has defined a third way of assigning DLSAP values that will allow for unique private
protocol demultiplexing. The DL_SUBS_BIND_REQ may be used to support this method.

The subsequent binding of DLSAPs can be peer or hierarchical. When the User requests peer
addressing, the DL_SUBS_BIND_REQ will specify a DLSAP that may be used in lieu of the
DLSAP that was bound in the DL_BIND_REQ. This will allow for a choice to be made between a
number of DLSAPs on astream when determining traffic based on DLSAP values. An example of
this would be to various ether_type values as DLSAPs. The DL_BIND_REQ, for example, could
be issued with ether_type value of IP, and a subsequent bind could be issued with ether_type
value of ARP. The provider may now multiplex off of the ether_type field and allow for either IP
or ARP traffic to be sent up this stream.

When the DLS User requests hierarchical binding, the DL_SUBS_BIND_REQ will specify a
DLSAP that will be used in addition to the DLSAP bound using a DL_BIND_REQ. This will
allow additional information to be specified, that will be used in a header or used for
demultiplexing. An example of this would be to use hierarchical bind to specify the OUI
(organizationally unique identifier) to be used by SNAP.

If a DLS Provider supports peer subsequent bind operations, the first SAP that is bound is used
as the source SAP when there is ambiguity.

E.3 PPA Access and Control
See reference Section 1.4.1 on page 6, and Section 3.1.1 on page 31.

A physical point of attachment (PPA) is referenced in DLPI by a PPA identifier, which is of type
t_uscalar_t . The format of this identifier is provider-specific. The DLS provider addendum
documentation should describe the format and generation of PPA identifiers for all physical
media it is expected to control. It should also describe how a PPA is controlled, the capabilities
of the PPA, the number of PPAs supported, and the administrative interface.

Multiplexing capabilities of a PPA should also be described in the DLS provider addendum
documentation. This conveys information on the number of DLSAPs that may be supported per
PPA, and the number of PPAs supported.

156 Open Group Technical Specification (2000)

DLS Provider-Specific Information PPA Access and Control

Another item that should be described is the manner in which a PPA is initialized. Section 3.1.1
presents the alternative methods supported by DLPI for initializing a PPA. The interactions of
auto-initialization or pre-initialization with the Attach and Bind services should be discussed,
and the following items should be addressed:

• Is auto-initialization,pre-initialization, or both supported for a PPA?

• Can the method of initialization be restricted on a PPA basis?

E.4 Quality of Service
See reference Chapter 4 on page 113.

Support of QOS parameter negotiation and selection is a provider-specific issue that must be
described for each implementation. The DLS provider addendum documentation should
describe which, if any, QOS parameters are supported by the provider. For parameters that are
negotiated end-to-end, the addendum should describe whether the provider supports end-to-
end negotiation, or whether these parameters are negotiated in a local manner only. Finally,
default QOS parameter values should be documented.

E.5 DL_INFO_ACK Values
See reference DL_INFO_ACK on page 34.

The DL_INFO_ACK primitive specifies information concerning a DLS provider’s restrictions
and capabilities. The DLS provider addendum documentation should describe the values for all
fields in the DL_INFO_ACK, and how they are determined (static, tunable, dynamic). At a
minimum, the addendum must describe the provider style and the service modes supported by
the DLS provider.

E.6 Supported Services
See reference Section 1.2 on page 2.

The overall services that a specific DLS provider supports should be described. These include
whether a provider supports connection-mode service, connectionless-mode service (
acknowledged or unacknowledged) , or both, and how a DLS user selects the appropriate mode.
For example, the mode may be mapped directly to a specific major/minor device, and the user
selects an appropriate mode by opening the corresponding special file. Alternatively, a DLS
provider which supports both modes may enable a DLS user to select the service mode on the
DL_BIND_REQ.

The file name(s) used to access a particular DLS provider and/or specific service modes of that
provider must also be documented.

Data Link Provider Interface (DLPI), Version 2 157

User State Transitions DLS Provider-Specific Information

E.7 User State Transitions
See Section B.5 on page 141.

While Appendix B on page 133 specifies the complete DLPI state transition table for the DLS
provider, a DLS user maintaining its own DLPI state may need to handle additional state
transitions in order to keep synchronized with the DLS provider. The DLS provider addendum
documentation should describe which provider-originated primitives may arrive in DLPI states
not considered in Appendix B on page 133, and how the DLS user has to handle them.

158 Open Group Technical Specification (2000)

Appendix F

DLPI Header File

This appendix contains the definitions needed by implementations of both DLS user and DLS
provider software, which are made available when <sys/dlpi.h> is included.

<sys/dlpi.h> makes available the definitions of t_scalar_t and t_uscalar_t respectively as a
signed and unsigned opaque integral type of equal length of at least 32 bits4.

#ifndef _SYS_DLPI_H
#define _SYS_DLPI_H
/*

* dlpi.h header for Data Link Provider Interface
*/

/*
* This header file has encoded the values so an existing driver
* or user which was written with the Logical Link Interface (LLI)
* can migrate to the DLPI interface in a binary compatible manner.
* Any fields which require a specific format or value are flagged
* with a comment containing the message LLI compatibility.
*/

/*
* DLPI revision definition history
*/

#define DL_CURRENT_VERSION 0x02 /* current version of dlpi */
#define DL_VERSION_2 0x02 /* version of dlpi March 12,1991 */

/*
* Primitives for Local Management Services
*/

#define DL_INFO_REQ 0x00 /* Information Req, LLI compatibility */
#define DL_INFO_ACK 0x03 /* Information Ack, LLI compatibility */
#define DL_ATTACH_REQ 0x0b /* Attach a PPA */
#define DL_DETACH_REQ 0x0c /* Detach a PPA */
#define DL_BIND_REQ 0x01 /* Bind dlsap address, LLI compatibility */
#define DL_BIND_ACK 0x04 /* Dlsap address bound, LLI compatibility */
#define DL_UNBIND_REQ 0x02 /* Unbind dlsap address, LLI compatibility */
#define DL_OK_ACK 0x06 /* Success acknowledgment, LLI comp. */
#define DL_ERROR_ACK 0x05 /* Error acknowledgment, LLI compatibility */
#define DL_SUBS_BIND_REQ 0x1b /* Bind Subsequent DLSAP address */
#define DL_SUBS_BIND_ACK 0x1c /* Subsequent DLSAP address bound */
#define DL_SUBS_UNBIND_REQ0x15 /* Subsequent unbind */
#define DL_ENABMULTI_REQ 0x1d /* Enable multicast addresses */
#define DL_DISABMULTI_REQ 0x1e /* Disable multicast addresses */
#define DL_PROMISCON_REQ 0x1f /* Turn on promiscuous mode */
#define DL_PROMISCOFF_REQ 0x20 /* Turn off promiscuous mode */

/*

4. To forestall portability problems, it is recommended that applications should not use values larger than 2**32 -1.

Data Link Provider Interface (DLPI), Version 2 159

DLPI Header File

* Primitives used for Connectionless Service
*/

#define DL_UNITDATA_REQ0x07 /* datagram send request, LLI compatibility */
#define DL_UNITDATA_IND 0x08 /* datagram receive indication, LLI comp. */
#define DL_UDERROR_IND 0x09 /* datagram error indication, LLI comp. */
#define DL_UDQOS_REQ 0x0a /* set QOS for subsequent datagram transmits */

/*
* Primitives used for Connection-Oriented Service
*/

#define DL_CONNECT_REQ 0x0d /* Connect request */
#define DL_CONNECT_IND 0x0e /* Incoming connect indication */
#define DL_CONNECT_RES 0x0f /* Accept previous connect indication */
#define DL_CONNECT_CON 0x10 /* Connection established */
#define DL_TOKEN_REQ 0x11 /* Passoff token request */
#define DL_TOKEN_ACK 0x12 /* Passoff token ack */
#define DL_DISCONNECT_REQ 0x13 /* Disconnect request */
#define DL_DISCONNECT_IND 0x14 /* Disconnect indication */
#define DL_RESET_REQ 0x17 /* Reset service request */
#define DL_RESET_IND 0x18 /* Incoming reset indication */
#define DL_RESET_RES 0x19 /* Complete reset processing */
#define DL_RESET_CON 0x1a /* Reset processing complete */

/*
* Primitives used for Acknowledged Connectionless Service
*/

#define DL_DATA_ACK_REQ 0x21 /* data unit transmission request */
#define DL_DATA_ACK_IND 0x22 /* Arrival of a command PDU */
#define DL_DATA_ACK_STATUS_IND 0x23 /* Status indication of DATA_ACK_REQ*/
#define DL_REPLY_REQ 0x24 /* Request a DLSDU from the remote */
#define DL_REPLY_IND 0x25 /* Arrival of a command PDU */
#define DL_REPLY_STATUS_IND 0x26 /* Status indication of REPLY_REQ */
#define DL_REPLY_UPDATE_REQ 0x27 /* Hold a DLSDU for transmission */
#define DL_REPLY_UPDATE_STATUS_IND0x28 /* Status of REPLY_UPDATE req */

/*
* Primitives used for XID and TEST operations
*/

#define DL_XID_REQ 0x29 /* Request to send an XID PDU */
#define DL_XID_IND 0x2a /* Arrival of an XID PDU */
#define DL_XID_RES 0x2b /* request to send a response XID PDU*/
#define DL_XID_CON 0x2c /* Arrival of a response XID PDU */
#define DL_TEST_REQ 0x2d /* TEST command request */
#define DL_TEST_IND 0x2e /* TEST response indication */
#define DL_TEST_RES 0x2f /* TEST response */
#define DL_TEST_CON 0x30 /* TEST Confirmation */

/*
* Primitives to get and set the physical address, and to get Statistics
*/

#define DL_PHYS_ADDR_REQ 0x31 /* Request to get physical addr */
#define DL_PHYS_ADDR_ACK 0x32 /* Return physical addr */
#define DL_SET_PHYS_ADDR_REQ 0x33 /* set physical addr */
#define DL_GET_STATISTICS_REQ 0x34 /* Request to get statistics */
#define DL_GET_STATISTICS_ACK 0x35 /* Return statistics */

/*
* DLPI interface states
*/

160 Open Group Technical Specification (2000)

DLPI Header File

#define DL_UNATTACHED 0x04 /* PPA not attached */
#define DL_ATTACH_PENDING 0x05 /* Waiting ack of DL_ATTACH_REQ */
#define DL_DETACH_PENDING 0x06 /* Waiting ack of DL_DETACH_REQ */
#define DL_UNBOUND 0x00 /* PPA attached, LLI compatibility */
#define DL_BIND_PENDING 0x01 /* Waiting ack of DL_BIND_REQ, */

/* LLI compatibility */
#define DL_UNBIND_PENDING 0x02 /* Waiting ack of DL_UNBIND_REQ, */

/* LLI compatibility */
#define DL_IDLE 0x03 /* dlsap bound, awaiting use, */

/* LLI compatibility */
#define DL_UDQOS_PENDING 0x07 /* Waiting ack of DL_UDQOS_REQ */
#define DL_OUTCON_PENDING 0x08 /* outgoing connection, */

/* awaiting DL_CONN_CON */
#define DL_INCON_PENDING 0x09 /* incoming connection, */

/* awaiting DL_CONN_RES */
#define DL_CONN_RES_PENDING 0x0a /* Waiting ack of DL_CONNECT_RES */
#define DL_DATAXFER 0x0b /* connection-oriented data transfer */
#define DL_USER_RESET_PENDING0x0c /* user initiated reset, */

/* awaiting DL_RESET_CON */
#define DL_PROV_RESET_PENDING0x0d /* provider initiated reset, */

/* awaiting DL_RESET_RES */
#define DL_RESET_RES_PENDING 0x0e /* Waiting ack of DL_RESET_RES */
#define DL_DISCON8_PENDING 0x0f /* Waiting ack of DL_DISC_REQ */

/* when in DL_OUTCON_PENDING */
#define DL_DISCON9_PENDING 0x10 /* Waiting ack of DL_DISC_REQ */

/* when in DL_INCON_PENDING */
#define DL_DISCON11_PENDING 0x11 /* Waiting ack of DL_DISC_REQ */

/* when in DL_DATAXFER */
#define DL_DISCON12_PENDING 0x12 /* Waiting ack of DL_DISC_REQ */

/* when in DL_USER_RESET_PENDING */
#define DL_DISCON13_PENDING 0x13 /* Waiting ack of DL_DISC_REQ */

/* when in DL_DL_PROV_RESET_PENDING */
#define DL_SUBS_BIND_PND 0x14 /* Waiting ack of DL_SUBS_BIND_REQ */
#define DL_SUBS_UNBIND_PND 0x15 /* Waiting ack of DL_SUBS_UNBIND_REQ */

/*
* DL_ERROR_ACK error return values
*
*/

#define DL_ACCESS 0x02 /* Improper permissions for request, */
/* LLI compatibility */

#define DL_BADADDR 0x01 /* DLSAP address in improper format or invalid*/
#define DL_BADCORR 0x05 /* Sequence number not from */

/* outstanding DL_CONN_IND */
#define DL_BADDATA 0x06 /* User data exceeded provider limit */
#define DL_BADPPA 0x08 /* Specified PPA was invalid */
#define DL_BADPRIM 0x09 /* Primitive received is not known */

/* by DLS provider */
#define DL_BADQOSPARAM 0x0a /* QOS parameters contained invalid values */
#define DL_BADQOSTYPE 0x0b /* QOS struct. type is unknown or unsupported*/
#define DL_BADSAP 0x00 /* Bad LSAP selector, LLI compatibility */
#define DL_BADTOKEN 0x0c /* Token used not associated with */

/* an active stream */
#define DL_BOUND 0x0d /* Attempted second bind with dl_max_conind */

/* or dl_conn_mgmt >0 on same DLSAP or PPA */
#define DL_INITFAILED 0x0e /* Physical Link initialization failed */
#define DL_NOADDR 0x0f /* Provider couldn’t allocate */

/* alternate address */
#define DL_NOTINIT 0x10 /* Physical Link not initialized */

Data Link Provider Interface (DLPI), Version 2 161

DLPI Header File

#define DL_OUTSTATE 0x03 /* Primitive issued in improper state, */
/* LLI compatibility */

#define DL_SYSERR 0x04 /* UNIX system error occurred, */
/* LLI compatibility */

#define DL_UNSUPPORTED 0x07 /* Requested service not supplied by provider */
#define DL_UNDELIVERABLE0x11 /* Previous data unit could not be delivered */
#define DL_NOTSUPPORTED0x12 /* Primitive is known but not supported */

/* by DLS provider */
#define DL_TOOMANY 0x13 /* limit exceeded */
#define DL_NOTENAB 0x14 /* Promiscuous mode not enabled */
#define DL_BUSY 0x15 /* Other streams for a particular PPA */

/* in the post-attached state */
#define DL_NOAUTO 0x16 /* Automatic handling of XID & TEST */

/* responses not supported */
#define DL_NOXIDAUTO 0x17 /* Automatic handling of XID not supported */
#define DL_NOTESTAUTO 0x18 /* Automatic handling of TEST not supported */
#define DL_XIDAUTO 0x19 /* Automatic handling of XID response */
#define DL_TESTAUTO 0x1a /* AUtomatic handling of TEST response*/
#define DL_PENDING 0x1b /* pending outstanding connect indications */

/*
* NOTE: The range of error codes, 0x80 - 0xff is reserved for
* implementation specific error codes. This reserved range of error
* codes will be defined by the DLS Provider.
*/

/*
* DLPI media types supported
*/

#define DL_CSMACD 0x0 /* IEEE 802.3 CSMA/CD network, LLI Compatibility */
#define DL_TPB 0x1 /* IEEE 802.4 Token Passing Bus, LLI Compatibility */
#define DL_TPR 0x2 /* IEEE 802.5 Token Passing Ring, LLI Compatibility */
#define DL_METRO 0x3 /* IEEE 802.6 Metro Net, LLI Compatibility */
#define DL_ETHER 0x4 /* Ethernet Bus, LLI Compatibility */
#define DL_HDLC 0x05 /* ISO HDLC protocol support, bit synchronous */
#define DL_CHAR 0x06 /* Character Synchronous protocol support, eg BISYNC*/
#define DL_CTCA 0x07 /* IBM Channel-to-Channel Adapter */
#define DL_FDDI 0x08 /* Fiber Distributed data interface */
#define DL_FC 0x10 /* Fibre Channel interface */
#define DL_ATM 0x11 /* ATM */
#define DL_IPATM 0x12 /* ATM Classical IP interface */
#define DL_X25 0x13 /* X.25 LAPB interface */
#define DL_ISDN 0x14 /* ISDN interface */
#define DL_HIPPI 0x15 /* HIPPI interface */
#define DL_100VG 0x16 /* 100 Based VG Ethernet */
#define DL_100VGTPR 0x17 /* 100 Based VG Token Ring */
#define DL_ETH_CSMA 0x18 /* ISO 8802/3 and Ethernet */
#define DL_100BT 0x19 /* 100 Base T */
#define DL_FRAME 0x0a /* Frame Relay LAPF */
#define DL_MPFRAME 0x0b /* Multi-protocol over Frame Relay */
#define DL_ASYNC 0x0c /* Character Asynchronous Protocol */
#define DL_IPX25 0x0d /* X.25 Classical IP interface */
#define DL_LOOP 0x0e /* software loopback */
#define DL_OTHER 0x09 /* Any other medium not listed above */

/*
* DLPI provider service supported.
*
* These must be allowed to be bitwise-OR for dl_service_mode in

162 Open Group Technical Specification (2000)

DLPI Header File

* DL_INFO_ACK.
*/

#define DL_CODLS 0x01 /* support connection-oriented service */
#define DL_CLDLS 0x02 /* support connectionless data link service */
#define DL_ACLDLS 0x04 /* support acknowledged connectionlessservice*/

/*
* DLPI provider style.
*
* The DLPI provider style which determines whether aprovider
* requires a DL_ATTACH_REQ to inform the provider which PPA
* user messages should be sent/received on.
*/

#define DL_STYLE1 0x0500 /* PPA is implicitly bound by open(2) */
#define DL_STYLE2 0x0501 /* PPA must be explicitly bound via DL_ATTACH_REQ */

/*
* DLPI Originator for Disconnect and Resets
*/

#define DL_PROVIDER 0x0700
#define DL_USER 0x0701

/*
* DLPI Disconnect Reasons
*/

#define DL_CONREJ_DEST_UNKNOWN 0x0800
#define DL_CONREJ_DEST_UNREACH_PERMANENT 0x0801
#define DL_CONREJ_DEST_UNREACH_TRANSIENT 0x0802
#define DL_CONREJ_QOS_UNAVAIL_PERMANENT 0x0803
#define DL_CONREJ_QOS_UNAVAIL_TRANSIENT 0x0804
#define DL_CONREJ_PERMANENT_COND 0x0805
#define DL_CONREJ_TRANSIENT_COND 0x0806
#define DL_DISC_ABNORMAL_CONDITION 0x0807
#define DL_DISC_NORMAL_CONDITION 0x0808
#define DL_DISC_PERMANENT_CONDITION 0x0809
#define DL_DISC_TRANSIENT_CONDITION 0x080a
#define DL_DISC_UNSPECIFIED 0x080b

/*
* DLPI Reset Reasons
*/

#define DL_RESET_FLOW_CONTROL 0x0900
#define DL_RESET_LINK_ERROR 0x0901
#define DL_RESET_RESYNCH 0x0902

/*
* DLPI status values for acknowledged connectionless data transfer
*/

#define DL_CMD_MASK 0x0f /* mask for command portion of status */
#define DL_CMD_OK 0x00 /* Command Accepted */
#define DL_CMD_RS 0x01 /* Unimplemented or inactivated service */
#define DL_CMD_UE 0x05 /* Data Link User interface error */
#define DL_CMD_PE 0x06 /* Protocol error */
#define DL_CMD_IP 0x07 /* Permanent implementation dependent error*/
#define DL_CMD_UN 0x09 /* Resources temporarily unavailable */
#define DL_CMD_IT 0x0f /* Temporary implementation dependent error */
#define DL_RSP_MASK 0xf0 /* mask for response portion of status */
#define DL_RSP_OK 0x00 /* Response DLSDU present */
#define DL_RSP_RS 0x10 /* Unimplemented or inactivated service */

Data Link Provider Interface (DLPI), Version 2 163

DLPI Header File

#define DL_RSP_NE 0x30 /* Response DLSDU never submitted */
#define DL_RSP_NR 0x40 /* Response DLSDU not requested */
#define DL_RSP_UE 0x50 /* Data Link User interface error */
#define DL_RSP_IP 0x70 /* Permanent implementation dependent error */
#define DL_RSP_UN 0x90 /* Resources temporarily unavailable */
#define DL_RSP_IT 0xf0 /* Temporary implementation dependent error */

/*
* Service Class values for acknowledged connectionless data transfer
*/

#define DL_RQST_RSP 0x01 /* Use acknowledge capability in MAC sublayer*/
#define DL_RQST_NORSP 0x02 /* No acknowledgement service requested */

/*
* DLPI address type definition
*/

#define DL_FACT_PHYS_ADDR 0x01 /* factory physical address */
#define DL_CURR_PHYS_ADDR0x02 /* current physical address */

/*
* DLPI flag definitions
*/

#define DL_POLL_FINAL 0x01 /* if set,indicates poll/final bit set*/

/*
* XID and TEST responses supported by the provider
*/

#define DL_AUTO_XID 0x01 /* provider will respond to XID */
#define DL_AUTO_TEST 0x02 /* provider will respond to TEST */

/*
* Subsequent bind type
*/

#define DL_PEER_BIND 0x01 /* subsequent bind on a peer addr */
#define DL_HIERARCHICAL_BIND 0x02 /* subs_bind on a hierarchical addr*/

/*
* DLPI promiscuous mode definitions
*/

#define DL_PROMISC_PHYS 0x01 /* promiscuous mode at phys level */
#define DL_PROMISC_SAP 0x02 /* promiscous mode at sap level */
#define DL_PROMISC_MULTI 0x03 /* promiscuous mode for multicast */

/*
* DLPI Quality Of Service definition for use in QOS structure definitions.
* The QOS structures are used in connection establishment, DL_INFO_ACK,
* and setting connectionless QOS values.
*/

/*
* Throughput
*
* This parameter is specified for both directions.
*/

typedef struct {
t_scalar_t dl_target_value; /* desired bits/second desired */
t_scalar_t dl_accept_value; /* min. acceptable bits/second */

} dl_through_t;

164 Open Group Technical Specification (2000)

DLPI Header File

/*
* transit delay specification
*
* This parameter is specified for both directions.
* expressed in milliseconds assuming a DLSDU size of 128 octets.
* The scaling of the value to the current DLSDU size is provider dependent.
*/

typedef struct {
t_scalar_t dl_target_value; /* desired value of service */
t_scalar_t dl_accept_value; /* min. acceptable value of service */

} dl_transdelay_t;

/*
* priority specification.
* priority range is 0-100, with 0 being highest value.
*/

typedef struct {
t_scalar_t dl_min;
t_scalar_t dl_max;

} dl_priority_t;

/*
* protection specification
*/

#define DL_NONE 0x0B01 /* no protection supplied */
#define DL_MONITOR 0x0B02 /* protection against passive monitoring */
#define DL_MAXIMUM 0x0B03 /* protection against modification, replay, */

/* addition, or deletion */
typedef struct {

t_scalar_t dl_min;
t_scalar_t dl_max;

} dl_protect_t;

/*
* Resilience specification
* probabilities are scaled by a factor of 10,000 with a time interval
* of 10,000 seconds.
*/

typedef struct {
t_scalar_t dl_disc_prob; /* probability of provider init DISC */
t_scalar_t dl_reset_prob; /* probability of provider init RESET */

} dl_resilience_t;

/*
* QOS type definition to be used for negotiation with the
* remote end of a connection, or aconnectionless unitdata request.
* There are two type definitions to handle the negotiation
* process at connection establishment. The typedef dl_qos_range_t
* is used to present a range for parameters. This is used
* in the DL_CONNECT_REQ and DL_CONNECT_INDmessages. The typedef
* dl_qos_sel_t is used to select a specific value for the QOS
* parameters. This is used in the DL_CONNECT_RES,DL_CONNECT_CON,
* and DL_INFO_ACK messages to define the selected QOS parameters
* for aconnection.
*
* NOTE:
* A DataLink provider which has unknown values for any of the fields
* will use a value of DL_UNKNOWN for all values in the fields.
*

Data Link Provider Interface (DLPI), Version 2 165

DLPI Header File

* NOTE:
* A QOS parameter value of DL_QOS_DONT_CAREinforms the DLS
* provider the user requesting this value doesn’t care
* what the QOS parameter is set to. This value becomes the
* least possible value in the range of QOS parameters.
* The order of the QOS parameter range is then:
* DL_QOS_DONT_CARE < 0 < MAXIMUM QOS VALUE
*/

#define DL_UNKNOWN -1
#define DL_QOS_DONT_CARE -2

/*
* Every QOS structure has the first 4 bytes containing a type
* field, denoting the definition of the rest of the structure.
* This is used in the same manner has the dl_primitive variable
* is in messages.
*
* The following list is the defined QOS structure type values and structures.
*/

#define DL_QOS_CO_RANGE10x0101 /* QOS range structure */
/* for Connection mode service */

#define DL_QOS_CO_SEL1 0x0102 /* QOS selection structure */
#define DL_QOS_CL_RANGE1 0x0103 /* QOS range structure for connectionless*/
#define DL_QOS_CL_SEL1 0x0104 /* QOS selection for connectionless mode*/
typedef struct {

t_uscalar_t dl_qos_type;
dl_through_t dl_rcv_throughput; /* desired and acceptable*/
dl_transdelay_t dl_rcv_trans_delay; /* desired and acceptable*/
dl_through_t dl_xmt_throughput;
dl_transdelay_t dl_xmt_trans_delay;
dl_priority_t dl_priority; /* min and max values */
dl_protect_t dl_protection; /* min and max values */
t_scalar_t dl_residual_error;
dl_resilience_t dl_resilience;

} dl_qos_co_range1_t;

typedef struct {
t_uscalar_t dl_qos_type;
t_scalar_t dl_rcv_throughput;
t_scalar_t dl_rcv_trans_delay;
t_scalar_t dl_xmt_throughput;
t_scalar_t dl_xmt_trans_delay;
t_scalar_t dl_priority;
t_scalar_t dl_protection;
t_scalar_t dl_residual_error;
dl_resilience_t dl_resilience;

} dl_qos_co_sel1_t;

typedef struct {
t_uscalar_t dl_qos_type;
dl_transdelay_t dl_trans_delay;
dl_priority_t dl_priority;
dl_protect_t dl_protection;
t_scalar_t dl_residual_error;

} dl_qos_cl_range1_t;

typedef struct {
t_uscalar_t dl_qos_type;
t_scalar_t dl_trans_delay;

166 Open Group Technical Specification (2000)

DLPI Header File

t_scalar_t dl_priority;
t_scalar_t dl_protection;
t_scalar_t dl_residual_error;

} dl_qos_cl_sel1_t;

/*
* DLPI interface primitive definitions.
*
* Each primitive is sent as a stream message. It is possible that
* the messages may be viewed as a sequence of bytes that have the
* following form without any padding. The structure definition
* of the following messages may have to change depending on the
* underlying hardware architecture and crossing of ahardware
* boundary with a different hardware architecture.
*
* Fields in the primitives having a name of the form
* dl_reserved cannot be used and have the value of
* binary zero, no bits turned on.
*
* Each message has the name defined followed by the
* stream message type (M_PROTO, M_PCPROTO, M_DATA)
*/

/*
* LOCAL MANAGEMENT SERVICEPRIMITIVES
*/

/*
* DL_INFO_REQ, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* set to DL_INFO_REQ */

} dl_info_req_t;

/*
* DL_INFO_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* set to DL_INFO_ACK */
t_uscalar_t dl_max_sdu; /* Max bytes in a DLSDU */
t_uscalar_t dl_min_sdu; /* Min bytes in a DLSDU */
t_uscalar_t dl_addr_length; /* length of DLSAP address */
t_uscalar_t dl_mac_type; /* type of medium supported*/
t_uscalar_t dl_reserved; /* value set to zero */
t_uscalar_t dl_current_state; /* state of DLPI interface */
t_scalar_t dl_sap_length; /* current length of SAP part */

/* of dlsap address */
t_uscalar_t dl_service_mode; /* CO, CL or ACL */
t_uscalar_t dl_qos_length; /* length of qos values */
t_uscalar_t dl_qos_offset; /* offset from beg. of block*/
t_uscalar_t dl_qos_range_length; /* available range of qos */
t_uscalar_t dl_qos_range_offset; /* offset from beg. of block*/
t_uscalar_t dl_provider_style; /* style1 or style2 */
t_uscalar_t dl_addr_offset; /* offset of the dlsap addr */
t_uscalar_t dl_version; /* version number */
t_uscalar_t dl_brdcst_addr_length; /* length of broadcast addr */
t_uscalar_t dl_brdcst_addr_offset; /* offset from beg. of block*/
t_uscalar_t dl_growth; /* set to zero */

} dl_info_ack_t;

Data Link Provider Interface (DLPI), Version 2 167

DLPI Header File

/*
* DL_ATTACH_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* set to DL_ATTACH_REQ*/
t_uscalar_t dl_ppa; /* id of the PPA */

} dl_attach_req_t;

/*
* DL_DETACH_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* set to DL_DETACH_REQ */

} dl_detach_req_t;

/*
* DL_BIND_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* set to DL_BIND_REQ */
t_uscalar_t dl_sap; /* info to identify dlsap addr */
t_uscalar_t dl_max_conind; /* max # of outstanding con_ind */
ushort dl_service_mode; /* CO, CL or ACL */
ushort dl_conn_mgmt; /* if non-zero, is con-mgmt stream */
t_uscalar_t dl_xidtest_flg; /* if set to 1 indicates automatic */

/* initiation of test and xid frames */
} dl_bind_req_t;

/*
* DL_BIND_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_BIND_ACK */
t_uscalar_t dl_sap; /* DLSAP addr info */
t_uscalar_t dl_addr_length; /* length of complete DLSAP addr */
t_uscalar_t dl_addr_offset; /* offset from beginning of M_PCPROTO*/
t_uscalar_t dl_max_conind; /* allowed max. # of con-ind */
t_uscalar_t dl_xidtest_flg; /* responses supported by provider*/

} dl_bind_ack_t;

/*
* DL_SUBS_BIND_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_SUBS_BIND_REQ */
t_uscalar_t dl_subs_sap_offset; /* offset of subs_sap */
t_uscalar_t dl_subs_sap_length; /* length of subs_sap */
t_uscalar_t dl_subs_bind_class; /* peer or hierarchical */

} dl_subs_bind_req_t;

/*
* DL_SUBS_BIND_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_SUBS_BIND_ACK */
t_uscalar_t dl_subs_sap_offset; /* offset of subs_sap */
t_uscalar_t dl_subs_sap_length; /* length of subs_sap */

} dl_subs_bind_ack_t;

168 Open Group Technical Specification (2000)

DLPI Header File

/*
* DL_UNBIND_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_UNBIND_REQ */

} dl_unbind_req_t;

/*
* DL_SUBS_UNBIND_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_SUBS_UNBIND_REQ */
t_uscalar_t dl_subs_sap_offset; /* offset of subs_sap */
t_uscalar_t dl_subs_sap_length; /* length of subs_sap */

} dl_subs_unbind_req_t;

/*
* DL_OK_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_OK_ACK */
t_uscalar_t dl_correct_primitive; /* primitive being acknowledged */

} dl_ok_ack_t;

/*
* DL_ERROR_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_ERROR_ACK */
t_uscalar_t dl_error_primitive; /* primitive in error */
t_uscalar_t dl_errno; /* DLPI error code */
t_uscalar_t dl_unix_errno; /* UNIX system error code */

} dl_error_ack_t;

/*
* DL_ENABMULTI_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_ENABMULTI_REQ */
t_uscalar_t dl_addr_length; /* length of multicast address */
t_uscalar_t dl_addr_offset; /* offset from beg. of M_PROTO block*/

} dl_enabmulti_req_t;

/*
* DL_DISABMULTI_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_DISABMULTI_REQ */
t_uscalar_t dl_addr_length; /* length of multicast address */
t_uscalar_t dl_addr_offset; /* offset from beg. of M_PROTO block*/

} dl_disabmulti_req_t;

/*
* DL_PROMISCON_REQ,M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_PROMISCON_REQ */
t_uscalar_t dl_level; /* physical,SAP level or ALL multicast*/

} dl_promiscon_req_t;

Data Link Provider Interface (DLPI), Version 2 169

DLPI Header File

/*
* DL_PROMISCOFF_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_PROMISCOFF_REQ */
t_uscalar_t dl_level; /* Physical,SAP level or ALL multicast*/

} dl_promiscoff_req_t;

/*
* Primitives to get and set the Physical address
*/

/*
* DL_PHYS_ADDR_REQ,M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_PHYS_ADDR_REQ */
t_uscalar_t dl_addr_type; /* factory or current physical addr */

} dl_phys_addr_req_t;

/*
* DL_PHYS_ADDR_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_PHYS_ADDR_ACK */
t_uscalar_t dl_addr_length; /* length of the physical addr */
t_uscalar_t dl_addr_offset; /* offset from beg. of block */

} dl_phys_addr_ack_t;

/*
* DL_SET_PHYS_ADDR_REQ,M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_SET_PHYS_ADDR_REQ */
t_uscalar_t dl_addr_length; /* length of physical addr */
t_uscalar_t dl_addr_offset; /* offset from beg. of block */

} dl_set_phys_addr_req_t;

/*
* Primitives to get statistics
*/

/*
* DL_GET_STATISTICS_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_GET_STATISTICS_REQ */

} dl_get_statistics_req_t;

/*
* DL_GET_STATISTICS_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_GET_STATISTICS_ACK */
t_uscalar_t dl_stat_length; /* length of statistics structure*/
t_uscalar_t dl_stat_offset; /* offset from beg. of block */

} dl_get_statistics_ack_t;

/*

170 Open Group Technical Specification (2000)

DLPI Header File

* CONNECTION-ORIENTEDSERVICE PRIMITIVES
*/

/*
* DL_CONNECT_REQ,M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_REQ */
t_uscalar_t dl_dest_addr_length; /* len. of dlsap addr */
t_uscalar_t dl_dest_addr_offset; /* offset */
t_uscalar_t dl_qos_length; /* len. of QOS parm val */
t_uscalar_t dl_qos_offset; /* offset */
t_uscalar_t dl_growth; /* set to zero */

} dl_connect_req_t;

/*
* DL_CONNECT_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_IND */
t_uscalar_t dl_correlation; /* provider’s correlation token */
t_uscalar_t dl_called_addr_length; /* length of called address */
t_uscalar_t dl_called_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_calling_addr_length; /* length of calling address */
t_uscalar_t dl_calling_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_qos_length; /* length of qos structure */
t_uscalar_t dl_qos_offset; /* offset from beginning of block */
t_uscalar_t dl_growth; /* set to zero */

} dl_connect_ind_t;

/*
* DL_CONNECT_RES, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_RES */
t_uscalar_t dl_correlation; /* provider’s correlation token */
t_uscalar_t dl_resp_token; /* token associated with responding stream */
t_uscalar_t dl_qos_length; /* length of qos structure */
t_uscalar_t dl_qos_offset; /* offset from beginning of block */
t_uscalar_t dl_growth; /* set to zero */

} dl_connect_res_t;

/*
* DL_CONNECT_CON,M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_CONNECT_CON */
t_uscalar_t dl_resp_addr_length; /* length of responder’s address */
t_uscalar_t dl_resp_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_qos_length; /* length of qos structure */
t_uscalar_t dl_qos_offset; /* offset from beginning of block */
t_uscalar_t dl_growth; /* set to zero */

} dl_connect_con_t;

/*
* DL_TOKEN_REQ, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_TOKEN_REQ */

Data Link Provider Interface (DLPI), Version 2 171

DLPI Header File

} dl_token_req_t;

/*
* DL_TOKEN_ACK, M_PCPROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_TOKEN_ACK */
t_uscalar_t dl_token; /* Connection response token */

/* associated with the stream */
} dl_token_ack_t;

/*
* DL_DISCONNECT_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_DISCONNECT_REQ */
t_uscalar_t dl_reason; /* normal, abnormal, perm. or transient */
t_uscalar_t dl_correlation; /* association with connect_ind */

} dl_disconnect_req_t;

/*
* DL_DISCONNECT_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_DISCONNECT_IND */
t_uscalar_t dl_originator; /* USER or PROVIDER */
t_uscalar_t dl_reason; /* permanent or transient */
t_uscalar_t dl_correlation; /* association with connect_ind */

} dl_disconnect_ind_t;

/*
* DL_RESET_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_REQ */

} dl_reset_req_t;

/*
* DL_RESET_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_IND */
t_uscalar_t dl_originator; /* Provider or User */
t_uscalar_t dl_reason; /* flow control, link error or resynch */

} dl_reset_ind_t;

/*
* DL_RESET_RES, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_RES */

} dl_reset_res_t;

/*
* DL_RESET_CON, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_RESET_CON */

} dl_reset_con_t;

172 Open Group Technical Specification (2000)

DLPI Header File

/*
* CONNECTIONLESSSERVICE PRIMITIVES
*/

/*
* DL_UNITDATA_REQ, M_PROTO type, with M_DATA block(s)
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_UNITDATA_REQ */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */
dl_priority_t dl_priority; /* priority value */

} dl_unitdata_req_t;

/*
* DL_UNITDATA_IND, M_PROTO type, with M_DATA block(s)
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_UNITDATA_IND */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */
t_uscalar_t dl_src_addr_length; /* DLSAP addr length of sending user */
t_uscalar_t dl_src_addr_offset; /* offset from beg. of block */
t_uscalar_t dl_group_address; /* set to one if multicast/broadcast */

} dl_unitdata_ind_t;

/*
* DL_UDERROR_IND, M_PROTO type
* (or M_PCPROTO type if LLI-based provider)
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_UDERROR_IND */
t_uscalar_t dl_dest_addr_length; /* Destination DLSAP */
t_uscalar_t dl_dest_addr_offset; /* Offset from beg. of bloc */
t_uscalar_t dl_unix_errno; /* unix system error code */
t_uscalar_t dl_errno; /* DLPI error code */

} dl_uderror_ind_t;

/*
* DL_UDQOS_REQ,M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_UDQOS_REQ */
t_uscalar_t dl_qos_length; /* length in bytes of requested qos */
t_uscalar_t dl_qos_offset; /* offset from beg. of block */

} dl_udqos_req_t;

/*
* Primitives to handle XID and TEST operations
*/

/*
* DL_TEST_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_TEST_REQ */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */

Data Link Provider Interface (DLPI), Version 2 173

DLPI Header File

} dl_test_req_t;

/*
* DL_TEST_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_TEST_IND */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */
t_uscalar_t dl_src_addr_length; /* DLSAP length of source user */
t_uscalar_t dl_src_addr_offset; /* offset from beg. of block */

} dl_test_ind_t;

/*
* DL_TEST_RES, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_TEST_RES */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */

} dl_test_res_t;

/*
* DL_TEST_CON, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_TEST_CON */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */
t_uscalar_t dl_src_addr_length; /* DLSAP length of source user */
t_uscalar_t dl_src_addr_offset; /* offset from beg. of block */

} dl_test_con_t;

/*
* DL_XID_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_XID_REQ */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */

} dl_xid_req_t;

/*
* DL_XID_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_XID_IND */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */
t_uscalar_t dl_src_addr_length; /* DLSAP length of source user */
t_uscalar_t dl_src_addr_offset; /* offset from beg. of block */

} dl_xid_ind_t;

/*

174 Open Group Technical Specification (2000)

DLPI Header File

* DL_XID_RES, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_XID_RES */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */

} dl_xid_res_t;

/*
* DL_XID_CON, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_XID_CON */
t_uscalar_t dl_flag; /* poll/final */
t_uscalar_t dl_dest_addr_length; /* DLSAP length of dest. user */
t_uscalar_t dl_dest_addr_offset; /* offset from beg. of block */
t_uscalar_t dl_src_addr_length; /* DLSAP length of source user */
t_uscalar_t dl_src_addr_offset; /* offset from beg. of block */

} dl_xid_con_t;

/*
* ACKNOWLEDGEDCONNECTIONLESSSERVICE PRIMITIVES
*/

/*
* DL_DATA_ACK_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_DATA_ACK_REQ */
t_uscalar_t dl_correlation; /* User’s correlation token */
t_uscalar_t dl_dest_addr_length; /* length of destination addr */
t_uscalar_t dl_dest_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_src_addr_length; /* length of source address */
t_uscalar_t dl_src_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_priority; /* priority */
t_uscalar_t dl_service_class; /* DL_RQST_RSP or DL_RQST_NORS */

} dl_data_ack_req_t;

/*
* DL_DATA_ACK_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_DATA_ACK_IND */
t_uscalar_t dl_dest_addr_length; /* length of destination addr */
t_uscalar_t dl_dest_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_src_addr_length; /* length of source address */
t_uscalar_t dl_src_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_priority; /* priority for data unit transm. */
t_uscalar_t dl_service_class; /* DL_RQST_RSP or DL_RQST_NORS */

} dl_data_ack_ind_t;

/*
* DL_DATA_ACK_STATUS_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_DATA_ACK_STATUS_IND */
t_uscalar_t dl_correlation; /* User’s correlation token */
t_uscalar_t dl_status; /* success or failure of previous req */

Data Link Provider Interface (DLPI), Version 2 175

DLPI Header File

} dl_data_ack_status_ind_t;

/*
* DL_REPLY_REQ, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_REPLY_REQ */
t_uscalar_t dl_correlation; /* User’s correlation token */
t_uscalar_t dl_dest_addr_length; /* length of destination address */
t_uscalar_t dl_dest_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_src_addr_length; /* source address length */
t_uscalar_t dl_src_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_priority; /* priority for data unit transm. */
t_uscalar_t dl_service_class;

} dl_reply_req_t;

/*
* DL_REPLY_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_REPLY_IND */
t_uscalar_t dl_dest_addr_length; /* length of destination address */
t_uscalar_t dl_dest_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_src_addr_length; /* length of source address */
t_uscalar_t dl_src_addr_offset; /* offset from beginning of block */
t_uscalar_t dl_priority; /* priority for data unit transm. */
t_uscalar_t dl_service_class; /* DL_RQST_RSP or DL_RQST_NORS */

} dl_reply_ind_t;

/*
* DL_REPLY_STATUS_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_REPLY_STATUS_IND */
t_uscalar_t dl_correlation; /* User’s correlation token */
t_uscalar_t dl_status; /* success or failure of previous req */

} dl_reply_status_ind_t;

/*
* DL_REPLY_UPDATE_REQ,M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_REPLY_UPDATE_REQ */
t_uscalar_t dl_correlation; /* User’s correlation token */
t_uscalar_t dl_src_addr_length; /* length of source address */
t_uscalar_t dl_src_addr_offset; /* offset from beginning of block */

} dl_reply_update_req_t;

/*
* DL_REPLY_UPDATE_STATUS_IND, M_PROTO type
*/

typedef struct {
t_uscalar_t dl_primitive; /* DL_REPLY_UPDATE_STATUS_IND */
t_uscalar_t dl_correlation; /* User’s correlation token */
t_uscalar_t dl_status; /* success or failure of previous req */

} dl_reply_update_status_ind_t;

union DL_primitives {
t_uscalar_t dl_primitive;

176 Open Group Technical Specification (2000)

DLPI Header File

dl_info_req_t info_req;
dl_info_ack_t info_ack;
dl_attach_req_t attach_req;
dl_detach_req_t detach_req;
dl_bind_req_t bind_req;
dl_bind_ack_t bind_ack;
dl_unbind_req_t unbind_req;
dl_subs_bind_req_t subs_bind_req;
dl_subs_bind_ack_t subs_bind_ack;
dl_subs_unbind_req_t subs_unbind_req;
dl_ok_ack_t ok_ack;
dl_error_ack_t error_ack;
dl_connect_req_t connect_req;
dl_connect_ind_t connect_ind;
dl_connect_res_t connect_res;
dl_connect_con_t connect_con;
dl_token_req_t token_reqq;
dl_token_ack_t token_ack;
dl_disconnect_req_t disconnect_req;
dl_disconnect_ind_t disconnect_ind;
dl_reset_req_t reset_req;
dl_reset_ind_t reset_ind;
dl_reset_res_t reset_res;
dl_reset_con_t reset_con;
dl_unitdata_req_t unitdata_req;
dl_unitdata_ind_t unitdata_ind;
dl_uderror_ind_t uderror_ind;
dl_udqos_req_t udqos_req;
dl_enabmulti_req_t enabmulti_req;
dl_disabmulti_req_t disabmulti_req;
dl_promiscon_req_t promiscon_req;
dl_promiscoff_req_t promiscoff_req;
dl_phys_addr_req_t physaddr_req;
dl_phys_addr_ack_t physaddr_ack;
dl_set_phys_addr_req_t set_physaddr_req;
dl_get_statistics_req_t get_statistics_req;
dl_get_statistics_ack_t get_statistics_ack;
dl_test_req_t test_req;
dl_test_ind_t test_ind;
dl_test_res_t test_res;
dl_test_con_t test_con;
dl_xid_req_t xid_req;
dl_xid_ind_t xid_ind;
dl_xid_res_t xid_res;
dl_xid_con_t xid_con;
dl_data_ack_req_t data_ack_req;
dl_data_ack_ind_t data_ack_ind;
dl_data_ack_status_ind_t data_ack_status_ind;
dl_reply_req_t reply_req;
dl_reply_ind_t reply_ind;
dl_reply_status_ind_t reply_status_ind;
dl_reply_update_req_t reply_update_req;
dl_reply_update_status_ind_t reply_update_status_ind;

};

#define DL_INFO_REQ_SIZE sizeof(dl_info_req_t)
#define DL_INFO_ACK_SIZE sizeof(dl_info_ack_t)
#define DL_ATTACH_REQ_SIZE sizeof(dl_attach_req_t)
#define DL_DETACH_REQ_SIZE sizeof(dl_detach_req_t)

Data Link Provider Interface (DLPI), Version 2 177

DLPI Header File

#define DL_BIND_REQ_SIZE sizeof(dl_bind_req_t)
#define DL_BIND_ACK_SIZE sizeof(dl_bind_ack_t)
#define DL_UNBIND_REQ_SIZE sizeof(dl_unbind_req_t)
#define DL_SUBS_BIND_REQ_SIZE sizeof(dl_subs_bind_req_t)
#define DL_SUBS_BIND_ACK_SIZE sizeof(dl_subs_bind_ack_t)
#define DL_SUBS_UNBIND_REQ_SIZE sizeof(dl_subs_unbind_req_t)
#define DL_OK_ACK_SIZE sizeof(dl_ok_ack_t)
#define DL_ERROR_ACK_SIZE sizeof(dl_error_ack_t)
#define DL_CONNECT_REQ_SIZE sizeof(dl_connect_req_t)
#define DL_CONNECT_IND_SIZE sizeof(dl_connect_ind_t)
#define DL_CONNECT_RES_SIZE sizeof(dl_connect_res_t)
#define DL_CONNECT_CON_SIZE sizeof(dl_connect_con_t)
#define DL_TOKEN_REQ_SIZE sizeof(dl_token_req_t)
#define DL_TOKEN_ACK_SIZE sizeof(dl_token_ack_t)
#define DL_DISCONNECT_REQ_SIZE sizeof(dl_disconnect_req_t)
#define DL_DISCONNECT_IND_SIZE sizeof(dl_disconnect_ind_t)
#define DL_RESET_REQ_SIZE sizeof(dl_reset_req_t)
#define DL_RESET_IND_SIZE sizeof(dl_reset_ind_t)
#define DL_RESET_RES_SIZE sizeof(dl_reset_res_t)
#define DL_RESET_CON_SIZE sizeof(dl_reset_con_t)
#define DL_UNITDATA_REQ_SIZE sizeof(dl_unitdata_req_t)
#define DL_UNITDATA_IND_SIZE sizeof(dl_unitdata_ind_t)
#define DL_UDERROR_IND_SIZE sizeof(dl_uderror_ind_t)
#define DL_UDQOS_REQ_SIZE sizeof(dl_udqos_req_t)
#define DL_ENABMULTI_REQ_SIZE sizeof(dl_enabmulti_req_t)
#define DL_DISABMULTI_REQ_SIZE sizeof(dl_disabmulti_req_t)
#define DL_PROMISCON_REQ_SIZE sizeof(dl_promiscon_req_t)
#define DL_PROMISCOFF_REQ_SIZE sizeof(dl_promiscoff_req_t)
#define DL_PHYS_ADDR_REQ_SIZE sizeof(dl_phys_addr_req_t)
#define DL_PHYS_ADDR_ACK_SIZE sizeof(dl_phys_addr_ack_t)
#define DL_SET_PHYS_ADDR_REQ_SIZE sizeof(dl_set_phys_addr_req_t)
#define DL_GET_STATISTICS_REQ_SIZE sizeof(dl_get_statistics_req_t)
#define DL_GET_STATISTICS_ACK_SIZE sizeof(dl_get_statistics_ack_t)
#define DL_XID_REQ_SIZE sizeof(dl_xid_req_t)
#define DL_XID_IND_SIZE sizeof(dl_xid_ind_t)
#define DL_XID_RES_SIZE sizeof(dl_xid_res_t)
#define DL_XID_CON_SIZE sizeof(dl_xid_con_t)
#define DL_TEST_REQ_SIZE sizeof(dl_test_req_t)
#define DL_TEST_IND_SIZE sizeof(dl_test_ind_t)
#define DL_TEST_RES_SIZE sizeof(dl_test_res_t)
#define DL_TEST_CON_SIZE sizeof(dl_test_con_t)
#define DL_DATA_ACK_REQ_SIZE sizeof(dl_data_ack_req_t)
#define DL_DATA_ACK_IND_SIZE sizeof(dl_data_ack_ind_t)
#define DL_DATA_ACK_STATUS_IND_SIZE sizeof(dl_data_ack_status_ind_t)
#define DL_REPLY_REQ_SIZE sizeof(dl_reply_req_t)
#define DL_REPLY_IND_SIZE sizeof(dl_reply_ind_t)
#define DL_REPLY_STATUS_IND_SIZE sizeof(dl_reply_status_ind_t)
#define DL_REPLY_UPDATE_REQ_SIZE sizeof(dl_reply_update_req_t)
#define DL_REPLY_UPDATE_STATUS_IND_SIZE sizeof(dl_reply_update_status_ind_t)

#endif /* _SYS_DLPI_H */

178 Open Group Technical Specification (2000)

Glossary

DLPI
Data Link Provider Interface

DLS
Data Link Service

DLSAP
Data Link Service Access Point

DLSDU
Data Link Service Data Unit

ISO
International Organization for Standardization

OSI
Open Systems Interconnection

PPA
Physical Point of Attachment

QOS
Quality of Service

Called
The DLS user in connection mode that processes requests for connections from other DLS users.

Calling
The DLS user in connection mode that initiates the establishment of a data link connection.

Communication endpoint
The local communication channel between a DLS user and DLS provider.

Connection establishment
The phase in connection mode that enables two DLS users to create a data link connection
between them.

Connectionless mode
A mode of transfer in which data is passed from one user to another in self-contained units with
no logical relationship required among the units.

Connection management stream
A special stream that will receive all incoming connect indications destined for DLSAP
addresses that are not bound to any other streams associated with a particular PPA.

Connection mode
A circuit-oriented mode of transfer in which data is passed from one user to another over an
established connection in a sequenced manner.

Connection release
The phase in connection mode that terminates a previously established data link connection.

Data link service data unit
A grouping of DLS user data whose boundaries are preserved from one end of a data link
connection to the other.

Data Link Provider Interface (DLPI), Version 2 179

Glossary

Data transfer
The phase in connection and connectionless modes that supports the transfer of data between
two DLS users.

DLSAP
A point at which a DLS user attaches itself to a DLS provider, to access data link services.

DLSAP address
An identifier used to differentiate and locate specific DLS user access points to a DLS provider.

DLS provider
The data link layer protocol that provides the services of the Data Link Provider Interface.

DLS user
The user-level application or user-level or kernel-level protocol which accesses the services of
the data link layer.

Local management
The phase in connection and connectionless modes in which a DLS user initializes a stream and
binds a DLSAP to the stream. Primitives in this phase generate local operations only.

PPA
The point at which a system attaches itself to a physical communications medium.

PPA identifier
An identifier of a particular physical medium over which communication transpires.

Quality of service
Characteristics of transmission quality between two DLS users.

180 Open Group Technical Specification (2000)

Index

acknowledged connectionless114
acknowledged connectionless-mode

data transfer service...26
service ...5, 26
service primitives ...99

address space...155
allowable sequence of DLPI primitives133
ATM...1
attach service ...11
bind service..12
Bisync ..1
Called ..179
Calling...179
Communication endpoint179
Connection establishment179
connection establishment service15
connectionless ...114
connectionless data transfer service.....................23
Connectionless mode...179
connectionless-mode QOS selection126
connectionless-mode service5, 23
connectionless-mode service primitives80
connection management stream8
Connection management stream179
Connection mode ...179
connection-mode QOS negotiation123
connection-mode sequence flow example28
connection-mode service............................4, 15, 113
connection-mode service primitives59
Connection release ...179
connection release service19
CSMA/CD ...1
Data Link Layer model..2
Data Link Provider Interface....................................1
Data link service data unit....................................179
Data Link Service definition.....................................1
data link user identification......................................7
Data transfer ..180
data transfer service...18
DL_ATTACH_REQ ..39
DL_BIND_ACK...46
DL_BIND_REQ ...42
DL_CONNECT_CON ...67
DL_CONNECT_IND...63
DL_CONNECT_REQ ..61
DL_CONNECT_RES ...65

DL_DATA_ACK_IND ...102
DL_DATA_ACK_REQ...100
DL_DATA_ACK_STATUS_IND..........................104
DL_DATA_IND...71
DL_DATA_REQ ..70
DL_DETACH_REQ ..41
DL_DISABMULTI_REQ..54
DL_DISCONNECT_IND..74
DL_DISCONNECT_REQ..72
DL_ENABMULTI_REQ...53
DL_ERROR_ACK...58
DL_GET_STATISTICS_ACK................................128
DL_GET_STATISTICS_REQ.................................129
DL_INFO_ACK...34
DL_INFO_ACK values..157
DL_INFO_REQ ...33
DL_OK_ACK...57
DL_PHYS_ADDR_ACK..130
DL_PHYS_ADDR_REQ ..131
DLPI ..1, 179
DLPI addressing..6
DLPI header...159
DLPI primitives...29
DLPI provider-originated events139
DLPI services ...9
DLPI states ...134
DLPI state transition table141
DLPI user-originated events138
DL_PROMISCOFF_REQ...56
DL_PROMISCON_REQ..55
DL_REPLY_IND ...107
DL_REPLY_REQ...105
DL_REPLY_STATUS_IND....................................108
DL_REPLY_UPDATE_REQ..................................110
DL_REPLY_UPDATE_STATUS_IND.................111
DL_RESET_CON..79
DL_RESET_IND..77
DL_RESET_REQ ...76
DL_RESET_RES ..78
DLS ..1, 179
DLSAP...179-180
DLSAP address ...180
DLSAP address space..155
DLSDU..179
DL_SET_PHYS_ADDR_REQ...............................132
DLS provider ...180

Data Link Provider Interface (DLPI), Version 2 181

Index

DLS provider-specific information.....................155
DL_SUBS_BIND_ACK ..51
DL_SUBS_BIND_REQ...49
DL_SUBS_UNBIND_REQ52
DLS user ...180
DLS users..153
DL_TEST_CON...92
DL_TEST_IND ..89
DL_TEST_REQ..87
DL_TEST_RES...90
DL_TOKEN_ACK ..69
DL_TOKEN_REQ...68
DL_UDERROR_IND..84
DL_UDQOS_REQ...85
DL_UNBIND_REQ ..48
DL_UNITDATA_IND..83
DL_UNITDATA_REQ..81
DL_XID_CON ...98
DL_XID_IND...95
DL_XID_REQ ..93
DL_XID_RES ...96
error reporting service.......................................24, 27
Ethernet...1
events

DLPI provider-originated.................................139
DLPI user-originated...138

FDDI ..1
guidelines for DLS users153
header file...159
information reporting service11
ISDN LAPD..1
ISO ...179
ISO/IEC 8802-2 ...1
ISO/IEC 8886...1
LLC ..1
Local management ...180
local management service primitives...................31
logical link control..1
management services ..11
management services primitives127
model of DLL...2
model of Service Interface ..2
modes of communication ...4
multi-threaded connection establishment59
negotiation ...123
OSI ...1, 179
physical attachment identification..........................6
PPA ..179-180
PPA access and control ...156
PPA identifier ..180

precedence
read queue ...150
write queue..148

precedence of DLPI primitives147
primitives

acknowledged connectionless-mode99
allowable ..133
connectionless-mode ...80
connection-mode..59
local management ..31
management services ..127
precedence ...147
TEST ..86
XID...86

priority ..116
protection ...117
protocol independence..153
provider-specific information..............................155

address space ..155
DL_INFO_ACK values157
PPA access and control156
QOS ...157
subsequent DLSAP addresses156
supported services ...157

QOS...113, 157, 179
acknowledged connectionless114
connectionless ...114
connectionless-mode selection........................126
connection-mode negotiation..........................123
connection-mode service..................................113
data structures ..120
management service......................................23, 27
negotiation...123
parameter definitions ..115
priority..116
protection...117
provider-specific information..........................157
residual error rate...118
resilience...118
selection..123
throughput...115
transit delay...116

quality of service ..113, 157
Quality of service..180
read queue precedence..150
reset service..20
residual error rate ...118
resilience...118
SDLC ...1
selection..126
Service Interface model ...2

182 Open Group Technical Specification (2000)

Index

SNA ...1
states

DLPI ..134
state transition table

actions...137
DLPI ..141
variables ...137

subsequent DLSAP addresses156
supported services ...157
TEST primitives ..86
TEST service ..24
throughput...115
token bus ..1
token ring ...1
transit delay ...116
write queue precedence ..148
X.25 LAPB...1
X.25 level 2 ...1
XID primitives...86
XID service...24

Data Link Provider Interface (DLPI), Version 2 183

Index

184 Open Group Technical Specification (2000)

